PetscSolverFeti.cc 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


#include "parallel/PetscSolverFeti.h"
#include "parallel/StdMpi.h"
#include "parallel/MpiHelper.h"

namespace AMDiS {

  using namespace std;


#ifdef HAVE_PETSC_DEV 
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  // y = mat * x
  int petscMultMatSchurPrimal(Mat mat, Vec x, Vec y)
  {
    // S_PiPi = K_PiPi - K_PiB inv(K_BB) K_BPi

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscSchurPrimalData* data = static_cast<PetscSchurPrimalData*>(ctx);

    MatMult(*(data->mat_b_primal), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);

    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    MatMult(*(data->mat_primal_primal), x, y);
    VecAXPBY(y, -1.0, 1.0, data->tmp_vec_primal);

    return 0;
  }


  // y = mat * x
  int petscMultMatFeti(Mat mat, Vec x, Vec y)
  {
    // F = L inv(K_BB) trans(L) + L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscFetiData* data = static_cast<PetscFetiData*>(ctx);

    // y = L inv(K_BB) trans(L) x
    MatMultTranspose(*(data->mat_lagrange), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, y);

    // tmp_vec_primal = inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    KSPSolve(*(data->ksp_schur_primal), data->tmp_vec_primal, data->tmp_vec_primal);

    // tmp_vec_lagrange = L inv(K_BB) K_BPi tmp_vec_primal
    //                  = L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_b_primal), data->tmp_vec_primal, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, data->tmp_vec_lagrange);

    VecAXPBY(y, 1.0, 1.0, data->tmp_vec_lagrange);

    return 0;
  }


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  // y = PC * x
  PetscErrorCode petscApplyFetiPrecon(PC pc, Vec x, Vec y)
  {
    void *ctx;
    PCShellGetContext(pc, &ctx);
    PetscFetiPreconData* data = static_cast<PetscFetiPreconData*>(ctx);

    MatMultTranspose(*(data->mat_lagrange_scaled), x, data->tmp_vec_b);

    int sizeB;
    int sizeBound;
    VecGetLocalSize(data->tmp_vec_b, &sizeB);
    VecGetLocalSize(data->tmp_vec_bound0, &sizeBound);

    PetscScalar *local_b;
    VecGetArray(data->tmp_vec_b, &local_b);

    PetscScalar *local_bound;
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_bound[j] = local_b[i];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);



    MatMult(*(data->mat_bound_bound), data->tmp_vec_bound0, data->tmp_vec_bound1);

    MatMult(*(data->mat_interior_bound), data->tmp_vec_bound0, data->tmp_vec_interior);
    KSPSolve(*(data->ksp_interior), data->tmp_vec_interior, data->tmp_vec_interior);
    MatMult(*(data->mat_bound_interior), data->tmp_vec_interior, data->tmp_vec_bound0);

    VecAXPBY(data->tmp_vec_bound0, 1.0, -1.0, data->tmp_vec_bound1);



    VecGetArray(data->tmp_vec_b, &local_b);
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_b[i] = local_bound[j];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);




    MatMult(*(data->mat_lagrange_scaled), data->tmp_vec_b, y);

    return 0;
  }


129
  void PetscSolverFeti::updateDofData()
130 131
  {
    FUNCNAME("PetscSolverFeti::updateDofData()");
132 133 134 135 136 137

    TEST_EXIT(meshDistributor->getMesh()->getDim() == 2)
      ("Works for 2D problems only!");

    TEST_EXIT(meshDistributor->getFeSpace()->getBasisFcts()->getDegree() == 1)
      ("Works for linear basis functions only!\n");
138
   
139 140 141 142 143 144 145
    createPrimals();

    createDuals();

    createLagrange();

    createIndexB();
146 147 148
  }


149
  void PetscSolverFeti::createPrimals()
150
  {
151
    FUNCNAME("PetscSolverFeti::createPrimals()");  
152

153 154 155
    // === Define all vertices on the interior boundaries of the macro mesh ===
    // === to be primal variables.                                          ===

156 157 158 159 160 161 162
    primals.clear();
    DofContainerSet& vertices = 
      meshDistributor->getBoundaryDofInfo().geoDofs[VERTEX];
    TEST_EXIT_DBG(vertices.size())("No primal vertices on this rank!\n");
    for (DofContainerSet::iterator it = vertices.begin(); 
	 it != vertices.end(); ++it)
      primals.insert(**it);
163

164 165 166 167

    // === Calculate the number of primals that are owned by the rank and ===
    // === create local indices of the primals starting at zero.          ===

168
    globalPrimalIndex.clear();
169 170 171 172
    nRankPrimals = 0;
    for (DofIndexSet::iterator it = primals.begin(); it != primals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it)) {
	globalPrimalIndex[*it] = nRankPrimals;
173 174 175
	nRankPrimals++;
      }

176

177 178 179
    // === Get overall number of primals and rank's displacement in the ===
    // === numbering of the primals.                                    ===

180
    nOverallPrimals = 0;
181
    rStartPrimals = 0;
182 183 184
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankPrimals, rStartPrimals, nOverallPrimals);

185 186 187

    // === Create global primal index for all primals. ===

188 189 190 191 192 193
    for (DofMapping::iterator it = globalPrimalIndex.begin();
	 it != globalPrimalIndex.end(); ++it)
      it->second += rStartPrimals;

    MSG_DBG("nRankPrimals = %d   nOverallPrimals = %d\n",
	    nRankPrimals, nOverallPrimals);
194

195 196 197 198 199

    // === Communicate primal's global index from ranks that own the     ===
    // === primals to ranks that contain this primals but are not owning ===
    // === them.                                                         ===

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (globalPrimalIndex.count(**dofIt))
	  stdMpi.getSendData(it->first).push_back(globalPrimalIndex[**dofIt]);
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank) 
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false)
	  globalPrimalIndex[**dofIt] = stdMpi.getRecvData(it->first)[i++];
      }
    }

    TEST_EXIT_DBG(primals.size() == globalPrimalIndex.size())
      ("Number of primals %d, but number of global primals on this rank is %d!\n",
       primals.size(), globalPrimalIndex.size());


    TEST_EXIT_DBG(nOverallPrimals > 0)
      ("There are zero primal nodes in domain!\n");
  }


  void PetscSolverFeti::createDuals()
  {
    FUNCNAME("PetscSolverFeti::createDuals()");
    
252 253
    // === Create for each dual node that is owned by the rank, the set ===
    // === of ranks that contain this node (denoted by W(x_j)).         ===
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    boundaryDofRanks.clear();

    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it) {
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	// If DOF is not primal, i.e., its a dual node
	if (primals.count(**dofIt) == 0) {
	  boundaryDofRanks[**dofIt].insert(mpiRank);
	  boundaryDofRanks[**dofIt].insert(it->first);
	}
      }
    }

270 271 272 273

    // === Communicate these sets for all rank owned dual nodes to other ===
    // === ranks that also have this node.                               ===

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    StdMpi<vector<std::set<int> > > stdMpi(meshDistributor->getMpiComm());
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0)
	  stdMpi.getSendData(it->first).push_back(boundaryDofRanks[**dofIt]);

    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank)
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)	
	if (primals.count(**dofIt) == 0)
	  boundaryDofRanks[**dofIt] = stdMpi.getRecvData(it->first)[i++];	      
    }


    // === Create global index of the dual nodes on each rank. ===

    duals.clear();
    globalDualIndex.clear();

    int nRankAllDofs = meshDistributor->getFeSpace()->getAdmin()->getUsedDofs();
    nRankB = nRankAllDofs - primals.size();
    nOverallB = 0;
    rStartB = 0;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankB, rStartB, nOverallB);
    DofContainer allBoundaryDofs;
    meshDistributor->getAllBoundaryDofs(allBoundaryDofs);
    int nRankInteriorDofs = nRankAllDofs - allBoundaryDofs.size();

    int nRankDuals = 0;
    for (DofContainer::iterator it = allBoundaryDofs.begin();
	 it != allBoundaryDofs.end(); ++it) {
      if (primals.count(**it) == 0) {
	duals.insert(**it);
	globalDualIndex[**it] = rStartB + nRankInteriorDofs + nRankDuals;
	nRankDuals++;
      }
    }

    int nOverallDuals = nRankDuals;
    mpi::globalAdd(nOverallDuals);

    MSG_DBG("nRankDuals = %d   nOverallDuals = %d\n",
	    nRankDuals, nOverallDuals);
  }

  
  void PetscSolverFeti::createLagrange()
  {
    FUNCNAME("PetscSolverFeti::createLagrange()");

347 348 349
    // === Reserve for each dual node, on the rank that owns this node, the ===
    // === appropriate number of Lagrange constraints.                      ===

350 351 352 353 354 355 356 357 358
    nRankLagrange = 0;
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      if (meshDistributor->getIsRankDof(*it)) {
	dofFirstLagrange[*it] = nRankLagrange;
	int degree = boundaryDofRanks[*it].size();
	nRankLagrange += (degree * (degree - 1)) / 2;
      }
    }

359 360 361 362 363

    // === Get the overall number of Lagrange constraints and create the ===
    // === mapping dofFirstLagrange, that defines for each dual boundary ===
    // === node the first Lagrange constraint global index.              ===

364
    nOverallLagrange = 0;
365
    rStartLagrange = 0;
366 367 368 369 370 371 372 373 374 375 376
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankLagrange, rStartLagrange, nOverallLagrange);

    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it))
	dofFirstLagrange[*it] += rStartLagrange;

    MSG_DBG("nRankLagrange = %d  nOverallLagrange = %d\n",
	    nRankLagrange, nOverallLagrange);


377
    // === Communicate dofFirstLagrange to all other ranks. ===
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) == 0) {
	  TEST_EXIT_DBG(dofFirstLagrange.count(**dofIt))("Should not happen!\n");
	  stdMpi.getSendData(it->first).push_back(dofFirstLagrange[**dofIt]);
	}
      }
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvData = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvData = true;
	  break;
	}
	  
      if (recvData)
	stdMpi.recv(it->first);
    }

    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int counter = 0;
      for (unsigned int i = 0; i < it->second.size(); i++)
	if (primals.count(*(it->second[i])) == 0)
	  dofFirstLagrange[*(it->second[i])] = stdMpi.getRecvData(it->first)[counter++];
415
    }     
416 417 418 419 420 421 422 423 424
  }


  void PetscSolverFeti::createIndexB()
  {
    FUNCNAME("PetscSolverFeti::createIndeB()");

    globalIndexB.clear();
    DOFAdmin* admin = meshDistributor->getFeSpace()->getAdmin();
425 426 427 428

    // === To ensure that all interior node on each rank are listen first in ===
    // === the global index of all B nodes, insert all interior nodes first, ===
    // === without defining a correct index.                                 ===
429 430 431 432 433 434
    
    for (int i = 0; i < admin->getUsedSize(); i++)
      if (admin->isDofFree(i) == false && primals.count(i) == 0)
	if (duals.count(i) == 0 && primals.count(i) == 0)
	  globalIndexB[i] = -1;

435 436 437

    // === Get correct index for all interior nodes. ===

438
    nLocalInterior = 0;
439 440
    for (DofMapping::iterator it = globalIndexB.begin(); 
	 it != globalIndexB.end(); ++it) {
441 442
      it->second = nLocalInterior + rStartB;
      nLocalInterior++;
443
    }
444
    nLocalBound = duals.size();
445

446
    TEST_EXIT_DBG(nLocalInterior + primals.size() + duals.size() == 
447 448 449
		  static_cast<unsigned int>(admin->getUsedDofs()))
      ("Should not happen!\n");

450 451 452

    // === And finally, add the global indicies of all dual nodes. ===

453 454 455
    for (DofIndexSet::iterator it = duals.begin();
	 it != duals.end(); ++it)
      globalIndexB[*it] = globalDualIndex[*it];
456 457 458
  }


459
  void PetscSolverFeti::createMatLagrange()
460 461 462
  {
    FUNCNAME("PetscSolverFeti::createMatLagrange()");

463 464
    // === Create distributed matrix for Lagrange constraints. ===

465
    MatCreateMPIAIJ(PETSC_COMM_WORLD,
466 467 468 469
		    nRankLagrange * nComponents, 
		    nRankB * nComponents,
		    nOverallLagrange * nComponents, 
		    nOverallB * nComponents,
470 471 472
		    2, PETSC_NULL, 2, PETSC_NULL,
		    &mat_lagrange);

473 474 475 476 477 478 479
    // === Create for all duals the corresponding Lagrange constraints. On ===
    // === each rank we traverse all pairs (n, m) of ranks, with n < m,    ===
    // === that contain this node. If the current rank number is r, and    ===
    // === n == r, the rank sets 1.0 for the corresponding constraint, if  ===
    // === m == r, than the rank sets -1.0 for the corresponding           ===
    // === constraint.                                                     ===

480 481 482 483
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      TEST_EXIT_DBG(dofFirstLagrange.count(*it))("Should not happen!\n");
      TEST_EXIT_DBG(boundaryDofRanks.count(*it))("Should not happen!\n");

484
      // Global index of the first Lagrange constriant for this node.
485
      int index = dofFirstLagrange[*it];
486
      // Copy set of all ranks that contain this dual node.
487
      vector<int> W(boundaryDofRanks[*it].begin(), boundaryDofRanks[*it].end());
488
      // Number of ranks that contain this dual node.
489 490 491 492 493 494 495
      int degree = W.size();

      TEST_EXIT_DBG(globalDualIndex.count(*it))("Should not happen!\n");
      int dualCol = globalDualIndex[*it];

      for (int i = 0; i < degree; i++) {
	for (int j = i + 1; j < degree; j++) {
496 497
	  if (W[i] == mpiRank || W[j] == mpiRank) {
	    // Set the constraint for all components of the system.
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	    for (int k = 0; k < nComponents; k++) {
	      int rowIndex = index * nComponents + k;
	      int colIndex = dualCol * nComponents + k;
	      double value = (W[i] == mpiRank ? 1.0 : -1.0);
	      MatSetValue(mat_lagrange, rowIndex, colIndex, value, 
			  INSERT_VALUES);
	    }
	  }

	  index++;
	}
      }
    }

    MatAssemblyBegin(mat_lagrange, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_lagrange, MAT_FINAL_ASSEMBLY);
  }


517
  void PetscSolverFeti::createSchurPrimalKsp()
518 519 520 521 522 523 524 525
  {
    FUNCNAME("PetscSolverFeti::createSchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = &mat_primal_primal;
    petscSchurPrimalData.mat_primal_b = &mat_primal_b;
    petscSchurPrimalData.mat_b_primal = &mat_b_primal;
    petscSchurPrimalData.ksp_b = &ksp_b;

526 527
    VecDuplicate(f_b, &(petscSchurPrimalData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscSchurPrimalData.tmp_vec_primal));
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

    MatCreateShell(PETSC_COMM_WORLD,
		   nRankPrimals * nComponents, nRankPrimals * nComponents,
		   nOverallPrimals * nComponents, nOverallPrimals * nComponents,
		   &petscSchurPrimalData, 
		   &mat_schur_primal);
    MatShellSetOperation(mat_schur_primal, MATOP_MULT, 
			 (void(*)(void))petscMultMatSchurPrimal);

    KSPCreate(PETSC_COMM_WORLD, &ksp_schur_primal);
    KSPSetOperators(ksp_schur_primal, mat_schur_primal, mat_schur_primal, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_schur_primal, "solver_sp_");
    KSPSetFromOptions(ksp_schur_primal);
  }


  void PetscSolverFeti::destroySchurPrimalKsp()
  {
    FUNCNAME("PetscSolverFeti::destroySchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = PETSC_NULL;
    petscSchurPrimalData.mat_primal_b = PETSC_NULL;
    petscSchurPrimalData.mat_b_primal = PETSC_NULL;
    petscSchurPrimalData.ksp_b = PETSC_NULL;

    VecDestroy(petscSchurPrimalData.tmp_vec_b);
    VecDestroy(petscSchurPrimalData.tmp_vec_primal);

    MatDestroy(mat_schur_primal);
    KSPDestroy(ksp_schur_primal);
  }


  void PetscSolverFeti::createFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::createFetiKsp()");

565 566
    // === Create FETI-DP solver object. ===

567 568 569 570 571 572 573 574
    petscFetiData.mat_primal_primal = &mat_primal_primal;
    petscFetiData.mat_primal_b = &mat_primal_b;
    petscFetiData.mat_b_primal = &mat_b_primal;
    petscFetiData.mat_lagrange = &mat_lagrange;
    petscFetiData.ksp_b = &ksp_b;
    petscFetiData.ksp_schur_primal = &ksp_schur_primal;


575 576
    VecDuplicate(f_b, &(petscFetiData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscFetiData.tmp_vec_primal));
577 578 579 580 581 582 583 584 585 586 587 588 589 590
    MatGetVecs(mat_lagrange, PETSC_NULL, &(petscFetiData.tmp_vec_lagrange));


    MatCreateShell(PETSC_COMM_WORLD,
		   nRankLagrange, nRankLagrange,
		   nOverallLagrange, nOverallLagrange,
		   &petscFetiData, &mat_feti);
    MatShellSetOperation(mat_feti, MATOP_MULT, (void(*)(void))petscMultMatFeti);


    KSPCreate(PETSC_COMM_WORLD, &ksp_feti);
    KSPSetOperators(ksp_feti, mat_feti, mat_feti, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_feti, "solver_feti_");
    KSPSetFromOptions(ksp_feti);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622


    // === Create FETI-DP Dirichlet preconditioner object. ===

    KSPCreate(PETSC_COMM_SELF, &ksp_interior);
    KSPSetOperators(ksp_interior, mat_interior_interior, mat_interior_interior, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_interior, "solver_interior_");
    KSPSetFromOptions(ksp_interior);

    
    MatDuplicate(mat_lagrange, MAT_COPY_VALUES, &mat_lagrange_scaled);
    MatScale(mat_lagrange_scaled, 0.5);

    petscFetiPreconData.mat_lagrange_scaled = &mat_lagrange_scaled;
    petscFetiPreconData.mat_interior_interior = &mat_interior_interior;
    petscFetiPreconData.mat_bound_bound = &mat_bound_bound;
    petscFetiPreconData.mat_interior_bound = &mat_interior_bound;
    petscFetiPreconData.mat_bound_interior = &mat_bound_interior;
    petscFetiPreconData.ksp_interior = &ksp_interior;
    petscFetiPreconData.nInterior = nRankB - duals.size();

    VecDuplicate(f_b, &(petscFetiPreconData.tmp_vec_b));

    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound0));
    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound1));
    MatGetVecs(mat_interior_interior, PETSC_NULL, &(petscFetiPreconData.tmp_vec_interior));


    KSPGetPC(ksp_feti, &precon_feti);
    PCSetType(precon_feti, PCSHELL);
    PCShellSetContext(precon_feti, static_cast<void*>(&petscFetiPreconData));
    PCShellSetApply(precon_feti, petscApplyFetiPrecon);
623 624 625 626 627 628 629
  }
  

  void PetscSolverFeti::destroyFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::destroyFetiKsp()");

630 631
    // === Destroy FETI-DP solver object. ===

632 633 634 635 636 637 638 639 640 641 642 643 644
    petscFetiData.mat_primal_primal = PETSC_NULL;
    petscFetiData.mat_primal_b = PETSC_NULL;
    petscFetiData.mat_b_primal = PETSC_NULL;
    petscFetiData.mat_lagrange = PETSC_NULL;
    petscFetiData.ksp_b = PETSC_NULL;
    petscFetiData.ksp_schur_primal = PETSC_NULL;

    VecDestroy(petscFetiData.tmp_vec_b);
    VecDestroy(petscFetiData.tmp_vec_primal);
    VecDestroy(petscFetiData.tmp_vec_lagrange);

    MatDestroy(mat_feti);
    KSPDestroy(ksp_feti);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662


    // === Destroy FETI-DP Dirichlet preconditioner object. ===

    KSPDestroy(ksp_interior);

    petscFetiPreconData.mat_lagrange_scaled = NULL;
    petscFetiPreconData.mat_interior_interior = NULL;
    petscFetiPreconData.mat_bound_bound = NULL;
    petscFetiPreconData.mat_interior_bound = NULL;
    petscFetiPreconData.mat_bound_interior = NULL;
    petscFetiPreconData.ksp_interior = NULL;

    VecDestroy(petscFetiPreconData.tmp_vec_b);
    VecDestroy(petscFetiPreconData.tmp_vec_bound0);
    VecDestroy(petscFetiPreconData.tmp_vec_bound1);
    VecDestroy(petscFetiPreconData.tmp_vec_interior);
    MatDestroy(mat_lagrange_scaled);
663 664 665 666 667 668 669 670 671
  }


  void PetscSolverFeti::recoverSolution(Vec &vec_sol_b,
					Vec &vec_sol_primal,
					SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::recoverSolution()");

672
    // === Get local part of the solution for B variables. ===
673 674 675 676 677

    PetscScalar *localSolB;
    VecGetArray(vec_sol_b, &localSolB);


678 679
    // === Create scatter to get solutions of all primal nodes that are ===
    // === contained in rank's domain.                                  ===
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    
    vector<PetscInt> globalIsIndex, localIsIndex;
    globalIsIndex.reserve(globalPrimalIndex.size() * nComponents);
    localIsIndex.reserve(globalPrimalIndex.size() * nComponents);

    {
      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	for (int i = 0; i < nComponents; i++) {
	  globalIsIndex.push_back(it->second * nComponents + i);
	  localIsIndex.push_back(counter++);
	}
      }
    }
    
    IS globalIs, localIs;
    ISCreateGeneral(PETSC_COMM_SELF, 
		    globalIsIndex.size(), 
		    &(globalIsIndex[0]),
		    PETSC_USE_POINTER,
		    &globalIs);

    ISCreateGeneral(PETSC_COMM_SELF, 
		    localIsIndex.size(), 
		    &(localIsIndex[0]),
		    PETSC_USE_POINTER,
		    &localIs);

    Vec local_sol_primal;
    VecCreateSeq(PETSC_COMM_SELF, localIsIndex.size(), &local_sol_primal);

    VecScatter primalScatter;
    VecScatterCreate(vec_sol_primal, globalIs, local_sol_primal, localIs, &primalScatter);
    VecScatterBegin(primalScatter, vec_sol_primal, local_sol_primal, 
		    INSERT_VALUES, SCATTER_FORWARD);
    VecScatterEnd(primalScatter, vec_sol_primal, local_sol_primal, 
		  INSERT_VALUES, SCATTER_FORWARD);

    ISDestroy(globalIs);
    ISDestroy(localIs);    
    VecScatterDestroy(primalScatter);    

    PetscScalar *localSolPrimal;
    VecGetArray(local_sol_primal, &localSolPrimal);


727
    // === And copy from PETSc local vectors to the DOF vectors. ===
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>& dofVec = *(vec.getDOFVector(i));

      for (DofMapping::iterator it = globalIndexB.begin();
	   it != globalIndexB.end(); ++it) {
	int petscIndex = (it->second - rStartB) * nComponents + i;
	dofVec[it->first] = localSolB[petscIndex];
      }

      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	dofVec[it->first] = localSolPrimal[counter * nComponents + i];
	counter++;
      }
    }



    VecRestoreArray(vec_sol_b, &localSolB);
    VecRestoreArray(local_sol_primal, &localSolPrimal);
    VecDestroy(local_sol_primal);
  }


754 755
  void PetscSolverFeti::fillPetscMatrix(Matrix<DOFMatrix*> *mat, 
					SystemVector *vec)
756 757
  {
    FUNCNAME("PetscSolverFeti::fillPetscMatrix()");   
758

759 760 761 762
    nComponents = vec->getSize();

    // === Create all sets and indices. ===

763 764
    updateDofData();

765 766 767 768 769 770 771

    // === Create matrices for the FETI-DP method. ===

    int nRowsRankB = nRankB * nComponents;
    int nRowsOverallB = nOverallB * nComponents;
    int nRowsRankPrimal = nRankPrimals * nComponents;
    int nRowsOverallPrimal = nOverallPrimals * nComponents;
772 773
    int nRowsInterior = nLocalInterior * nComponents;
    int nRowsBound = nLocalBound * nComponents;
774 775

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
776 777
		    nRowsRankB, nRowsRankB, nRowsOverallB, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_b);
778 779

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
780 781 782
		    nRowsRankPrimal, nRowsRankPrimal, 
		    nRowsOverallPrimal, nRowsOverallPrimal,
		    10, PETSC_NULL, 10, PETSC_NULL, &mat_primal_primal);
783 784

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
785 786 787
		    nRowsRankB, nRowsRankPrimal, 
		    nRowsOverallB, nRowsOverallPrimal,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_primal);
788 789

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
790 791 792 793
		    nRowsRankPrimal, nRowsRankB,
		    nRowsOverallPrimal, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_primal_b);

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    // === Create matrices for Dirichlet FETI-DP preconditioner. ===

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsInterior, 100, PETSC_NULL,
		    &mat_interior_interior);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsBound, 100, PETSC_NULL,
		    &mat_bound_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsBound, 100, PETSC_NULL,
		    &mat_interior_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsInterior, 100, PETSC_NULL,
		    &mat_bound_interior);

813 814
    
    // === Prepare traverse of sequentially created matrices. ===
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    vector<int> cols, colsOther;
    vector<double> values, valuesOther;
    cols.reserve(300);
    colsOther.reserve(300);
    values.reserve(300);
    valuesOther.reserve(300);

830 831 832 833 834 835 836
    vector<int> colsLocal, colsLocalOther;
    vector<double> valuesLocal, valuesLocalOther;
    colsLocal.reserve(300);
    colsLocalOther.reserve(300);
    valuesLocal.reserve(300);
    valuesLocalOther.reserve(300);

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

    // === Traverse all sequentially created matrices and add the values to ===
    // === the global PETSc matrices.                                       ===

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
	if (!(*mat)[i][j])
	  continue;

	traits::col<Matrix>::type col((*mat)[i][j]->getBaseMatrix());
	traits::const_value<Matrix>::type value((*mat)[i][j]->getBaseMatrix());
	
	// Traverse all rows.
	for (cursor_type cursor = begin<row>((*mat)[i][j]->getBaseMatrix()), 
	       cend = end<row>((*mat)[i][j]->getBaseMatrix()); cursor != cend; ++cursor) {
852

853
	  bool rowPrimal = primals.count(*cursor) != 0;
854
  
855 856
	  cols.clear();
	  colsOther.clear();
857
	  values.clear();	  
858
	  valuesOther.clear();
859 860 861 862 863 864

	  colsLocal.clear();
	  colsLocalOther.clear();
	  valuesLocal.clear();
	  valuesLocalOther.clear();

865 866 867 868 869
	  
	  // Traverse all columns.
	  for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	       icursor != icend; ++icursor) {

870 871 872
	    bool colPrimal = primals.count(col(*icursor)) != 0;

	    if (colPrimal) {
873 874 875 876 877 878 879 880 881 882
	      // Column is a primal variable.

	      TEST_EXIT_DBG(globalPrimalIndex.count(col(*icursor)))
		("No global primal index for DOF %d!\n", col(*icursor));
	      
	      int colIndex = globalPrimalIndex[col(*icursor)] * nComponents + j;
	      
	      if (rowPrimal) {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
883
	      } else {
884 885 886 887 888 889 890 891
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      }
	    } else {
	      // Column is not a primal variable.

	      TEST_EXIT_DBG(globalIndexB.count(col(*icursor)))
		("No global B index for DOF %d!\n", col(*icursor));
892
	      
893 894 895 896 897 898 899 900
	      int colIndex = globalIndexB[col(*icursor)] * nComponents + j;

	      if (rowPrimal) {
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      } else {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
901 902
	      }
	    }
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943



	    // === For preconditioner ===

	    if (!rowPrimal && !colPrimal) {
	      int rowIndex = globalIndexB[*cursor] - rStartB;
	      int colIndex = globalIndexB[col(*icursor)] - rStartB;
		
	      if (rowIndex < nLocalInterior) {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		}
	      } else {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		}
	      }		
	    }


944
	  }
945

946 947 948
	  if (rowPrimal) {
	    TEST_EXIT_DBG(globalPrimalIndex.count(*cursor))
	      ("Should not happen!\n");
949

950 951 952
	    int rowIndex = globalPrimalIndex[*cursor] * nComponents + i;
	    MatSetValues(mat_primal_primal, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
953

954 955 956 957 958 959
	    if (colsOther.size())
	      MatSetValues(mat_primal_b, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  } else {
	    TEST_EXIT_DBG(globalIndexB.count(*cursor))
	      ("Should not happen!\n");
960

961 962 963
	    int rowIndex = globalIndexB[*cursor] * nComponents + i;
	    MatSetValues(mat_b_b, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
964

965 966 967 968
	    if (colsOther.size())
	      MatSetValues(mat_b_primal, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  }
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

	  // === For preconditioner ===

	  if (!rowPrimal) {
	    int rowIndex = globalIndexB[*cursor] - rStartB;

	    if (rowIndex < nLocalInterior) {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB) * nComponents + i;

	      MatSetValues(mat_interior_interior, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_interior_bound, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);
	    } else {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB - nLocalInterior) * nComponents + i;

	      MatSetValues(mat_bound_bound, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_bound_interior, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);

	    }
	  }


1000 1001 1002 1003
	} 
      }
    }
    
1004

1005
    // === Start global assembly procedure. ===
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    MatAssemblyBegin(mat_b_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_b, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_b_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_b, MAT_FINAL_ASSEMBLY);
	  

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    MatAssemblyBegin(mat_interior_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_interior, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_interior_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_interior, MAT_FINAL_ASSEMBLY);


1033
    // === Create and fill PETSc's right hand side vectors. ===
1034

1035 1036 1037
    VecCreate(PETSC_COMM_WORLD, &f_b);
    VecSetSizes(f_b, nRankB * nComponents, nOverallB * nComponents);
    VecSetType(f_b, VECMPI);
1038

1039 1040
    VecCreate(PETSC_COMM_WORLD, &f_primal);
    VecSetSizes(f_primal, nRankPrimals * nComponents, 
1041
		nOverallPrimals * nComponents);
1042
    VecSetType(f_primal, VECMPI);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>::Iterator dofIt(vec->getDOFVector(i), USED_DOFS);
      for (dofIt.reset(); !dofIt.end(); ++dofIt) {
	int index = dofIt.getDOFIndex();
	if (primals.count(index)) {
	  TEST_EXIT_DBG(globalPrimalIndex.count(index))
	    ("Should not happen!\n");

	  index = globalPrimalIndex[index] * nComponents + i;
	  double value = *dofIt;
1054
	  VecSetValues(f_primal, 1, &index, &value, ADD_VALUES);
1055 1056 1057 1058 1059 1060
	} else {
	  TEST_EXIT_DBG(globalIndexB.count(index))
	    ("Should not happen!\n");

	  index = globalIndexB[index] * nComponents + i;
	  double value = *dofIt;
1061
	  VecSetValues(f_b, 1, &index, &value, ADD_VALUES);
1062 1063 1064 1065
	}      
      }
    }

1066 1067
    VecAssemblyBegin(f_b);
    VecAssemblyEnd(f_b);
1068

1069 1070
    VecAssemblyBegin(f_primal);
    VecAssemblyEnd(f_primal);
1071 1072


1073
    // === Create and fill PETSc matrix for Lagrange constraints. ===
1074

1075
    createMatLagrange();
1076 1077

    
1078 1079 1080 1081 1082 1083
    // === Create PETSc solver for the Schur complement on primal variables. ===
    
    createSchurPrimalKsp();


    // === Create PETSc solver for the FETI-DP operator. ===
1084 1085

    createFetiKsp();
1086 1087 1088
  }


1089
  void PetscSolverFeti::solveFetiMatrix(SystemVector &vec)
1090
  {
1091
    FUNCNAME("PetscSolverFeti::solveFetiMatrix()");
1092

1093 1094 1095
    // Create transpose of Lagrange matrix.
    Mat mat_lagrange_transpose;
    MatTranspose(mat_lagrange, MAT_INITIAL_MATRIX, &mat_lagrange_transpose);
1096 1097


1098
    // === Create nested matrix which will contain the overall FETI system. ===
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    Mat A;
    Mat nestedA[3][3];
    nestedA[0][0] = mat_b_b;
    nestedA[0][1] = mat_b_primal;
    nestedA[0][2] = mat_lagrange_transpose;
    nestedA[1][0] = mat_primal_b;
    nestedA[1][1] = mat_primal_primal;
    nestedA[1][2] = PETSC_NULL;
    nestedA[2][0] = mat_lagrange;
    nestedA[2][1] = PETSC_NULL;
    nestedA[2][2] = PETSC_NULL;
1111

1112
    MatCreateNest(PETSC_COMM_WORLD, 3, PETSC_NULL, 3, PETSC_NULL, &(nestedA[0][0]), &A);
1113

1114 1115 1116
    MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
  
1117 1118


1119 1120 1121
    int nRankNest = (nRankB + nRankPrimals) * nComponents + nRankLagrange;    
    int nOverallNest = (nOverallB + nOverallPrimals) * nComponents + nOverallLagrange;
    int rStartNest = (rStartB + rStartPrimals) * nComponents + rStartLagrange;
1122

1123 1124
    {
      // === Test some matrix sizes. ===
1125

1126 1127 1128 1129 1130
      int matRow, matCol;
      MatGetLocalSize(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == nRankNest)("Should not happen!\n");
      mpi::globalAdd(matRow);
      TEST_EXIT_DBG(matRow == nOverallNest)("Should not happen!\n");
1131

1132 1133 1134
      MatGetOwnershipRange(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == rStartNest)("Should not happen!\n");
    }
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    // === Create rhs and solution vectors for the overall FETI system. ===

    Vec f;
    VecCreate(PETSC_COMM_WORLD, &f);
    VecSetSizes(f, nRankNest, nOverallNest);
    VecSetType(f, VECMPI);

    Vec b;
    VecDuplicate(f, &b);

    
    // === Fill rhs vector by coping the primal and non primal PETSc vectors. ===
1148

1149 1150
    PetscScalar *local_f_b;
    VecGetArray(f_b, &local_f_b);
1151

1152 1153
    PetscScalar *local_f_primal;
    VecGetArray(f_primal, &local_f_primal);
1154

1155 1156 1157 1158 1159 1160 1161
    {
      int size;
      VecGetLocalSize(f_b, &size);
      TEST_EXIT_DBG(size == nRankB * nComponents)("Should not happen!\n");
      VecGetLocalSize(f_primal, &size);
      TEST_EXIT_DBG(size == nRankPrimals * nComponents)("Should not happen!\n");
    }
1162

1163 1164
    PetscScalar *local_f;
    VecGetArray(f, &local_f);
1165

1166 1167 1168 1169 1170
    int index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_f[index++] = local_f_b[i];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_f[index++] = local_f_primal[i];
1171

1172 1173 1174
    VecRestoreArray(f, &local_f);  
    VecRestoreArray(f_b, &local_f_b);
    VecRestoreArray(f_primal, &local_f_primal);
1175

1176 1177
    
    // === Create solver and solve the overall FETI system. ===
1178

1179 1180 1181 1182
    KSP ksp;
    KSPCreate(PETSC_COMM_WORLD, &ksp);
    KSPSetOperators(ksp, A, A, SAME_NONZERO_PATTERN);
    KSPSetFromOptions(ksp);
1183 1184


1185
    KSPSolve(ksp, f, b);
1186 1187


1188 1189 1190 1191 1192
    // === Reconstruct FETI solution vectors. ===
    
    Vec u_b, u_primal;
    VecDuplicate(f_b, &u_b);
    VecDuplicate(f_primal, &u_primal);
1193 1194
    

1195 1196
    PetscScalar *local_b;
    VecGetArray(b, &local_b);
1197

1198 1199
    PetscScalar *local_u_b;
    VecGetArray(u_b, &local_u_b);
1200

1201 1202
    PetscScalar *local_u_primal;
    VecGetArray(u_primal, &local_u_primal);
1203

1204 1205 1206 1207 1208
    index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_u_b[i] = local_b[index++];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_u_primal[i] = local_b[index++];
1209

1210 1211 1212
    VecRestoreArray(f, &local_b);
    VecRestoreArray(u_b, &local_u_b);
    VecRestoreArray(u_primal, &local_u_primal);
1213

1214
    recoverSolution(u_b, u_primal, vec);
1215

1216 1217 1218 1219
    VecDestroy(u_b);
    VecDestroy(u_primal);
    VecDestroy(b);
    VecDestroy(f);
1220

1221 1222
    KSPDestroy(ksp);
  }
1223 1224


1225 1226 1227
  void PetscSolverFeti::solveReducedFetiMatrix(SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::solveReducedFetiMatrix()");
1228

1229
    // === Create solver for the non primal (thus local) variables. ===
1230

1231 1232 1233 1234 1235 1236 1237
    KSPCreate(PETSC_COMM_WORLD, &ksp_b);
    KSPSetOperators(ksp_b, mat_b_b, mat_b_b, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_b, "solver_b_");
    KSPSetFromOptions(ksp_b);

    // RHS and solution vector.
    Vec vec_rhs;
1238

1239 1240 1241 1242 1243 1244 1245 1246
    // Some temporary vectors.
    Vec tmp_b0, tmp_b1, tmp_lagrange0, tmp_primal0, tmp_primal1;
    MatGetVecs(mat_lagrange, PETSC_NULL, &tmp_lagrange0);
    MatGetVecs(mat_lagrange, PETSC_NULL, &vec_rhs);
    MatGetVecs(mat_b_b, PETSC_NULL, &tmp_b0);
    MatGetVecs(mat_b_b, PETSC_NULL, &tmp_b1);
    MatGetVecs(mat_primal_primal, PETSC_NULL, &tmp_primal0);
    MatGetVecs(mat_primal_primal, PETSC_NULL, &tmp_primal1);
1247 1248


1249
    // === Create new rhs ===
1250

1251 1252 1253
    // vec_rhs = L * inv(K_BB) * f_b
    KSPSolve(ksp_b, f_b, tmp_b0);
    MatMult(mat_lagrange, tmp_b0, vec_rhs);
1254

1255 1256
    // tmp_primal0 = M_PiB * inv(K_BB) * f_b
    MatMult(mat_primal_b, tmp_b0, tmp_primal0);
1257

1258 1259
    // tmp_primal0 = f_Pi - M_PiB * inv(K_BB) * f_b
    VecAXPBY(tmp_primal0, -1.0, 1.0, f_primal);
1260

1261 1262
    // tmp_primal0 = inv(S_PiPi) (f_Pi - M_PiB * inv(K_BB) * f_b)
    KSPSolve(ksp_schur_primal, tmp_primal0, tmp_primal0);