Liebe Gitlab-Nutzer, lieber Gitlab-Nutzer,
es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Die Konten der externen Nutzer:innen sind über den Reiter "Standard" erreichbar.
Die Administratoren


Dear Gitlab user,
it is now possible to log in to our service using the ZIH login/LDAP. The accounts of external users can be accessed via the "Standard" tab.
The administrators

BddcMlSolver.cc 8.15 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.

12 13
#ifdef HAVE_BDDC_ML

14 15 16 17 18
extern "C" {
#include <bddcml_interface_c.h>
}

#include "parallel/BddcMlSolver.h"
19
#include "parallel/MpiHelper.h"
20 21 22

namespace AMDiS {

23
  void BddcMlSolver::fillPetscMatrix(Matrix<DOFMatrix*> *m)
24 25
  {
    FUNCNAME("BddcMlSolver::fillPetscMatrix()");
26 27

    mat = m;
28 29 30 31 32 33
  }


  void BddcMlSolver::fillPetscRhs(SystemVector *vec)
  {
    FUNCNAME("BddcMlSolver::fillPetscRhs()");
34 35

    rhsVec = vec;
36 37 38 39 40 41 42
  }


  void BddcMlSolver::solvePetscMatrix(SystemVector &vec, AdaptInfo *adaptInfo)
  {
    FUNCNAME("BddcMlSolver::solvePetscMatrix()");
    
43 44 45
    TEST_EXIT(rhsVec)("Should not happen!\n");
    TEST_EXIT(mat)("Should not happen!\n");

46
    int nComponents = vec.getSize();
47
    const FiniteElemSpace *feSpace = vec.getFeSpace(0);
48 49 50 51 52 53 54 55 56 57 58 59 60 61
    Mesh *mesh = feSpace->getMesh();
    

    // === First, create a continous leaf element index on each subdomain ===

    std::set<int> leafElIndex;
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      leafElIndex.insert(elInfo->getElement()->getIndex());
      elInfo = stack.traverseNext(elInfo);
    }

    map<int, int> mapElIndex;
62
    int nLeafEls = 0;
63 64 65 66 67 68 69 70 71 72
    for (std::set<int>::iterator it = leafElIndex.begin();
	 it != leafElIndex.end(); ++it)
      mapElIndex[*it] = nLeafEls++;



    int nLevel = 1;
    int nSubdomains = meshDistributor->getMpiSize();
    int length = 1;
    int nSubPerProc = 1;
73
    MPI_Fint c2f = MPI_Comm_c2f(meshDistributor->getMpiComm());
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    int verboseLevel = 2;
    int numbase = 0;

    bddcml_init(&nLevel, &nSubdomains, &length, &nSubPerProc, 
		&c2f, &verboseLevel, &numbase);

    // global number of elements
    int nelem = mesh->getNumberOfLeaves();
    mpi::globalAdd(nelem);

    // global number of nodes
    int nnod = meshDistributor->getNumberOverallDofs(feSpace);

    // global number of dofs
    int ndof = nnod * nComponents;

    // space dimenstion
    int ndim = 2;

    // mesh dimension
    int meshdim = 2;

    // global indes of subdomain
    int isub = meshDistributor->getMpiRank();

    // local number of elements
    int nelems = nLeafEls;

    // local number of nodes
103
    int nnods = feSpace->getAdmin()->getUsedSize();
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    // local number of dofs
    int ndofs = nnods * nComponents;

    // Length of array inet
    int linet = nelems * 3;
    
    // Local array with indices of nodes on each element
    int inet[linet];
    elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      int localElIndex = mapElIndex[elInfo->getElement()->getIndex()];
      for (int i = 0; i < 3; i++)
	inet[localElIndex * 3 + i] = elInfo->getElement()->getDof(i, 0);
      elInfo = stack.traverseNext(elInfo);
    }


    // local array of number of nodes per element
    int nnet[nelems];
    for (int i = 0; i < nelems; i++)
      nnet[i] = 3;

    // local array with number of DOFs per node.
128 129
    int nndf[nnods];
    for (int i = 0; i < nnods; i++)
130 131 132
      nndf[i] = nComponents;

    // array of indices of subdomain nodes in global numbering
133 134 135
    int isngn[nnods];
    for (int i = 0; i < nnods; i++)
      isngn[i] = meshDistributor->mapLocalToGlobal(feSpace, i);
136 137 138

    // array of indices of subdomain variables in global numbering
    int isvgvn[ndof];
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    for (int j = 0; j < nnods; j++)
      for (int i = 0; i < nComponents; i++)
	isvgvn[j * nComponents + i] = 
	  meshDistributor->mapLocalToGlobal(feSpace, j) * nComponents + i;

    // array of indices of subdomain elements in global numbering
    int isegn[nelems];
    int rStartEl, nOverallEl;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nelems, rStartEl, nOverallEl);
    for (int i = 0; i < nelems; i++)
      isegn[i] = rStartEl + i;



    int lxyz1 = nnods;
    int lxyz2 = 2;
    // local array with coordinates of nodes
    double xyz[lxyz1 * lxyz2];
    
    {
      DOFVector<WorldVector<double> > coordDofs(feSpace, "tmp");
      mesh->getDofIndexCoords(feSpace, coordDofs);

      for (int i = 0; i < lxyz2; i++)
	for (int j = 0; j < nnods; j++)
	  xyz[i * nnods + j] = coordDofs[j][i];
    }

    // local array of indices denoting dirichlet boundary data
    int ifix[ndofs];
    for (int i = 0; i < ndofs; i++)
      ifix[ndofs] = -1;

    // local array of values for dirichlet boundary data
    double fixv[ndofs];

    // local rhs data
    double rhs[ndofs];
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>& dofvec = *(rhsVec->getDOFVector(i));
      for (int j = 0; j < ndofs; j++)
	rhs[j * nComponents + i] = dofvec[j];
    }

    // Completenes of the rhs vector on subdomains
    int is_rhs_complete = 1;

    // Local array with initial solution guess
    double sol[ndofs];
    for (int i = 0; i < ndofs; i++)
      sol[i] = 0.0;

    // matrix type (set here to unsymmetric)
    int matrixtype = 0;
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    // Non zero structure of matrix
    vector<int> i_sparse;
    vector<int> j_sparse;
    vector<double> a_sparse;

    for (int i = 0; i < nComponents; i++)
      for (int j = 0; j < nComponents; j++)
	if ((*mat)[i][j])
	  addDofMatrix((*mat)[i][j], 
		       i_sparse, j_sparse, a_sparse, nComponents, i, j);
	

    // Number of non-zero entries in matrix
    int la = i_sparse.size();
    
    // Matrix is assembled
    int is_assembled_int = 1;


    bddcml_upload_subdomain_data(&nelem,
				 &nnod,
				 &ndof,
				 &ndim,
				 &meshdim,
				 &isub,
				 &nelems,
				 &nnods,
				 &ndofs,
				 inet,
				 &linet,
				 nnet,
				 &nelems,
				 nndf,
				 &nnods,
				 isngn,
				 &nnods,
				 isvgvn,
				 &ndof,
				 isegn,
				 &nelems,
				 xyz,
				 &lxyz1,
				 &lxyz2,
				 ifix,
				 &ndofs,
				 fixv,
				 &ndofs,
				 rhs,
				 &ndofs,
				 &is_rhs_complete,
				 sol,
				 &ndofs,
				 &matrixtype,
				 &(i_sparse[0]),
				 &(j_sparse[0]),
				 &(a_sparse[0]),
				 &la,
				 &is_assembled_int);


    int use_defaults_int = 1;
    int parallel_division_int = 1;
    int use_arithmetic_int = 1;
    int use_adaptive_int = 1;
    bddcml_setup_preconditioner(&matrixtype, 
				&use_defaults_int,
				&parallel_division_int,
				&use_arithmetic_int,
				&use_adaptive_int);


    int method = 1;
    double tol = 1.e-6;
    int maxit = 1000;
    int ndecrmax = 30;
    int num_iter = 0;
    int converged_reason = 0;
    double condition_number = 0.0;

    bddcml_solve(&c2f, 
		 &method, 
		 &tol,
		 &maxit,
		 &ndecrmax,
		 &num_iter,
		 &converged_reason,
		 &condition_number);

    MSG("BDDCML converged reason: %d within %d iterations \n", 
	converged_reason, num_iter);
285 286 287 288 289 290 291 292 293 294

    bddcml_finalize();
  }


  void BddcMlSolver::destroyMatrixData()
  {
    FUNCNAME("BddcMlSolver::destroyMatrixData()");
  }

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

  void BddcMlSolver::addDofMatrix(DOFMatrix* dmat, 
				  vector<int> i_sparse, 
				  vector<int> j_sparse,
				  vector<double> a_sparse,
				  int nComponents,
				  int ithRowComponent,
				  int ithColComponent)
  {
    FUNCNAME("BddcMlSolver::addDofMatrix()");

    TEST_EXIT(dmat)("Should not happen!\n");

    const FiniteElemSpace *feSpace = dmat->getFeSpace();

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::col<Matrix>::type col(dmat->getBaseMatrix());
    traits::const_value<Matrix>::type value(dmat->getBaseMatrix());

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    for (cursor_type cursor = begin<row>(dmat->getBaseMatrix()), 
	   cend = end<row>(dmat->getBaseMatrix()); cursor != cend; ++cursor) {
      int rowIndex = 
	meshDistributor->mapLocalToGlobal(feSpace, *cursor) * nComponents +
	ithRowComponent;

      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	   icursor != icend; ++icursor) {	
	int colIndex = 
	  meshDistributor->mapLocalToGlobal(feSpace, col(*icursor)) * nComponents +
	  ithColComponent;

	double val = value(*icursor);
	
	i_sparse.push_back(rowIndex);
	j_sparse.push_back(colIndex);
	a_sparse.push_back(val);
      }
    }

  }

342 343
}

344 345
#endif