Mesh.cc 28.6 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1 2 3 4 5 6
#include <algorithm>
#include <set>
#include <map>

#include "time.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#include "AdaptStationary.h"
#include "AdaptInstationary.h"
#include "FiniteElemSpace.h"
#include "ElementData.h"
#include "MacroElement.h"
#include "MacroReader.h"
#include "Mesh.h"
#include "Traverse.h"
#include "Parameters.h"
#include "FixVec.h"
#include "DOFVector.h"
#include "CoarseningManager.h"
#include "DOFIterator.h"
#include "VertexVector.h"
#include "MacroWriter.h"
#include "PeriodicMap.h"
#include "Projection.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
24
#include "ElInfoStack.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136


namespace AMDiS {

#define TIME_USED(f,s) ((double)((s)-(f))/(double)CLOCKS_PER_SEC)

  //**************************************************************************
  //  flags, which information should be present in the elInfo structure     
  //**************************************************************************

  const Flag Mesh::FILL_NOTHING    = 0X00L;
  const Flag Mesh::FILL_COORDS     = 0X01L;
  const Flag Mesh::FILL_BOUND      = 0X02L;
  const Flag Mesh::FILL_NEIGH      = 0X04L;
  const Flag Mesh::FILL_OPP_COORDS = 0X08L;
  const Flag Mesh::FILL_ORIENTATION= 0X10L;
  const Flag Mesh::FILL_DET        = 0X20L;
  const Flag Mesh::FILL_GRD_LAMBDA = 0X40L;
  const Flag Mesh::FILL_ADD_ALL    = 0X80L;


  const Flag Mesh::FILL_ANY_1D= (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_2D= (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_3D= (0X01L|0X02L|0X04L|0X08L|0X10L|0x20L|0X40L|0X80L);

  //**************************************************************************
  //  flags for Mesh traversal                                                
  //**************************************************************************

  const Flag Mesh::CALL_EVERY_EL_PREORDER  = 0X0100L;
  const Flag Mesh::CALL_EVERY_EL_INORDER   = 0X0200L;
  const Flag Mesh::CALL_EVERY_EL_POSTORDER = 0X0400L;
  const Flag Mesh::CALL_LEAF_EL            = 0X0800L;
  const Flag Mesh::CALL_LEAF_EL_LEVEL      = 0X1000L;
  const Flag Mesh::CALL_EL_LEVEL           = 0X2000L;
  const Flag Mesh::CALL_MG_LEVEL           = 0X4000L ; // used in mg methods 


  // const Flag Mesh::USE_PARAMETRIC          = 0X8000L ; // used in mg methods 

  // ::std::list<Mesh*> Mesh::meshes;
  DOFAdmin* Mesh::compressAdmin = NULL;
  Mesh* Mesh::traversePtr = NULL;
  int Mesh::iadmin = 0;
  ::std::vector<DegreeOfFreedom> Mesh::dof_used;
  const int Mesh::MAX_DOF=100;
  ::std::map<DegreeOfFreedom, DegreeOfFreedom*> Mesh::serializedDOFs;

  struct delmem { 
    DegreeOfFreedom* ptr;
    int              len;
  };


  Mesh::Mesh(const ::std::string& aName, int dimension) 
    : name(aName), 
      dim(dimension), 
      nVertices(0),
      nEdges(0),
      nLeaves(0), 
      nElements(0),
      parametric(NULL), 
      preserveCoarseDOFs(false),
      nDOFEl(0),
      nDOF(dimension, DEFAULT_VALUE, 0),
      nNodeEl(0),
      node(dimension, DEFAULT_VALUE, 0),
      elementPrototype(NULL),
      elementDataPrototype(NULL),
      elementIndex(-1),
      initialized(false),
      final_lambda(dimension, DEFAULT_VALUE, 0.0)
  {

    FUNCNAME("Mesh::Mesh");

    // set default element prototype
    switch(dim) {
    case 1:
      elementPrototype = NEW Line(this);
      break;
    case 2:
      elementPrototype = NEW Triangle(this);
      break;
    case 3:
      elementPrototype = NEW Tetrahedron(this);
      break;
    default:
      ERROR_EXIT("invalid dimension\n");
    }

    elementPrototype->setIndex(-1);

    elementIndex=0;
  };

  Mesh::~Mesh()
  {
  };

  void Mesh::addMacroElement(MacroElement* m) {
    macroElements.push_back(m); 
    m->setIndex(macroElements.size());
  };




  int Mesh::traverse(int level, Flag flag, 
		     int (*el_fct)(ElInfo*))
  {
    FUNCNAME("Mesh::traverse()");
Thomas Witkowski's avatar
Thomas Witkowski committed
137

138
    ::std::deque<MacroElement*>::iterator mel;
Thomas Witkowski's avatar
Thomas Witkowski committed
139 140
    ElInfoStack elInfoStack(this);
    ElInfo* elinfo = elInfoStack.getNextElement();
141 142 143 144 145 146 147 148 149 150 151 152 153
    Traverse tinfo(this, flag, level, el_fct);
    int sum = 0;
  
    elinfo->setFillFlag(flag);
  
    if (flag.isSet(Mesh::CALL_LEAF_EL_LEVEL) || 
	flag.isSet(Mesh::CALL_EL_LEVEL)      || 
	flag.isSet(Mesh::CALL_MG_LEVEL)) {
      TEST(level >= 0)("invalid level: %d\n", level);
    }
  
    for (mel = macroElements.begin(); mel != macroElements.end(); mel++) {
      elinfo->fillMacroInfo(*mel);
Thomas Witkowski's avatar
Thomas Witkowski committed
154
      sum += tinfo.recursive(&elInfoStack);
155 156
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
157
    elInfoStack.getBackElement();
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    
    return (flag.isSet(Mesh::FILL_ADD_ALL)) ? sum : 0;
  }



  void Mesh::addDOFAdmin(DOFAdmin *localAdmin)
  {    
    FUNCNAME("Mesh::addDOFAdmin()");

    int i, j, d, n;
    ::std::vector<DOFAdmin*>::iterator dai;

    localAdmin->setMesh(this);
    n = admin.size();

    dai=::std::find(admin.begin(),admin.end(),localAdmin);
    if (dai!= admin.end()) {
      ERROR("admin %s is already associated to mesh %s\n",
	    localAdmin->getName().c_str(), this->getName().c_str());
    }

    // ===== adding dofs to already existing elements ============================ 

    if (initialized) {
      static bool pnd_1d_0[2] = {true, true};
      static bool pnd_1d_1[1] = {false};
      static bool pnd_2d_0[3] = {true, true, true};
      static bool pnd_2d_1[3] = {true, true, false};
      static bool pnd_2d_2[1] = {false};
      static bool pnd_3d_0[4] = {true, true, true, true};
      static bool pnd_3d_1[6] = {false, true, true, true, true, true};
      static bool pnd_3d_2[4] = {true, true, false, false};
      static bool pnd_3d_3[1] = {false};
      static bool *pnd_1d[2] = {pnd_1d_0, pnd_1d_1};
      static bool *pnd_2d[3] = {pnd_2d_0, pnd_2d_1, pnd_2d_2};
      static bool *pnd_3d[4] = {pnd_3d_0, pnd_3d_1, pnd_3d_2, pnd_3d_3};
      static bool **parentNeedsDOF[4] = {NULL, pnd_1d, pnd_2d, pnd_3d};

     
      ::std::list<struct delmem> delList;
      ::std::map< ::std::set<DegreeOfFreedom>, DegreeOfFreedom*> dofPtrMap;
      const DOFAdmin *vertexAdmin = getVertexAdmin();
      int vertexAdminPreDOFs = vertexAdmin->getNumberOfPreDOFs(VERTEX);

      // finding necessary node number for new admin

      int newNNode=0;
      GeoIndex geoIndex;

      for(d = 0; d < dim+1; d++) {
	geoIndex = INDEX_OF_DIM(d, dim);
      
	if (localAdmin->getNumberOfDOFs(geoIndex)>0||nDOF[geoIndex]>0)
	  newNNode+=getGeo(geoIndex);
      };

215 216
      bool extendNodes = (newNNode>nNodeEl);
      int oldNNodes = nNodeEl;
217

218
      nNodeEl = newNNode;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

      TraverseStack stack;
      ElInfo *elInfo = NULL;
    
      WARNING("You are using untested code (adding dofs to existing mesh). Please contact\nsoftware administrator if any errors occur in this context.\n");

      elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
      while(elInfo) {
	Element *element = elInfo->getElement();
	DegreeOfFreedom *newDOF, **oldDOF, **dof = 
	  const_cast<DegreeOfFreedom**>(element->getDOF());

	int index = 0;

	if (extendNodes) {
	  oldDOF=dof;
	  element->setDOFPtrs();
	  dof=const_cast<DegreeOfFreedom**>(element->getDOF());
	  int index=0,oldIndex=0;
	  for(d = 0; d < dim+1; d++) {
	    geoIndex = INDEX_OF_DIM(d, dim);
	    if (nDOF[geoIndex]>0) {
	      for(i=0;i<getGeo(geoIndex);++i) 
		dof[index++]=oldDOF[oldIndex++];
	    }
	    else {
	      if (localAdmin->getNumberOfDOFs(geoIndex)>0) 
		index+=getGeo(geoIndex);
	    }
	  }
	
	  FREE_MEMORY(oldDOF, DegreeOfFreedom*, oldNNodes);

252
	  TEST_EXIT_DBG(index == nNodeEl)("ERROR: Number of entered nodes %f != number of nodes %f\n",index,nNodeEl);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	}


	index=0;

	// allocate new memory at elements
	for(d = 0; d < dim+1; d++) {
	  geoIndex = INDEX_OF_DIM(d, dim);
      
	  int numberOfDOFs = localAdmin->getNumberOfDOFs(geoIndex);
	  int numberOfPreDOFs = nDOF[geoIndex];

	  if (numberOfDOFs>0||numberOfPreDOFs>0) {

	    // for all vertices/edges/...
	    for(i = 0; i < getGeo(geoIndex); i++, index++) {
	      ::std::set<DegreeOfFreedom> dofSet;
	      for(j = 0; j < d+1; j++) {
		dofSet.insert(dof[element->getVertexOfPosition(geoIndex, i, j)][vertexAdminPreDOFs]);
	      }
	    
	      if(element->isLeaf() || parentNeedsDOF[dim][d][i]) {
		if(dofPtrMap[dofSet] == NULL) {
		  if(localAdmin->getNumberOfDOFs(geoIndex)) {
		    newDOF = GET_MEMORY(DegreeOfFreedom, numberOfPreDOFs + numberOfDOFs);
		    // copy old dofs to new memory and free old memory
		    if(dof[index]) {
		      for(j = 0; j < numberOfPreDOFs; j++) {
			newDOF[j] = dof[index][j];
		      }
		      //	  FREE_MEMORY(dof[index], DegreeOfFreedom, numberOfPreDOFs);
		      // Do not free memory. The information has to be used to identify the part in other elements.
		      // The memory is only marked for freeing.
		      struct delmem fm;
		      fm.ptr=dof[index];
		      fm.len=numberOfPreDOFs;
		      delList.push_back(fm);
		    }
		    for(j = 0; j < numberOfDOFs; j++) {
		      newDOF[numberOfPreDOFs + j] = localAdmin->getDOFIndex();
		    }
		    dof[index] = newDOF;
		  }
		  dofPtrMap[dofSet] = dof[index];
		} else {
		  dof[index] = dofPtrMap[dofSet];
		}
	      }
	    }
	  }
	}
	elInfo = stack.traverseNext(elInfo);
      }
  
      // now free the old dof memory:

      ::std::list<struct delmem>::iterator it=delList.begin();
    
      while(it!=delList.end()) {
	FREE_MEMORY((*it).ptr, DegreeOfFreedom, (*it).len);
	it++;
      }

      delList.clear();

    }
    // ============================================================================

    admin.push_back(localAdmin);

    nDOFEl = 0;

    localAdmin->setNumberOfPreDOFs(VERTEX,nDOF[VERTEX]);
    nDOF[VERTEX]  += localAdmin->getNumberOfDOFs(VERTEX);
    nDOFEl += getGeo(VERTEX) * nDOF[VERTEX];

    if(dim > 1) {
      localAdmin->setNumberOfPreDOFs(EDGE,nDOF[EDGE]);
      nDOF[EDGE]    += localAdmin->getNumberOfDOFs(EDGE);
      nDOFEl += getGeo(EDGE) * nDOF[EDGE];
    }

    localAdmin->setNumberOfPreDOFs(CENTER,nDOF[CENTER]);
    nDOF[CENTER]  += localAdmin->getNumberOfDOFs(CENTER);
    nDOFEl += nDOF[CENTER];

340
    TEST_EXIT_DBG(nDOF[VERTEX] > 0)("no vertex dofs\n");
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

    node[VERTEX]  = 0;
    nNodeEl     = getGeo(VERTEX);

    if(dim > 1) {
      node[EDGE]    = nNodeEl;
      if (nDOF[EDGE] > 0) nNodeEl += getGeo(EDGE);
    }

    if (3==dim){
      localAdmin->setNumberOfPreDOFs(FACE,nDOF[FACE]);
      nDOF[FACE]  += localAdmin->getNumberOfDOFs(FACE);
      nDOFEl     += getGeo(FACE) * nDOF[FACE];
      node[FACE]    = nNodeEl;
      if (nDOF[FACE] > 0) nNodeEl +=  getGeo(FACE);
    }

    node[CENTER]    = nNodeEl;
    if (nDOF[CENTER] > 0) nNodeEl += 1;

    return;
  }


  /****************************************************************************/
  /*  dofCompress: remove holes in dof vectors                                */
  /****************************************************************************/

  void Mesh::dofCompress()
  {
371 372 373
    FUNCNAME("Mesh::dofCompress()");
    int size;
    Flag fill_flag;
374

375
    for (iadmin = 0; iadmin < static_cast<int>(admin.size()); iadmin++) {
376 377 378
      compressAdmin = admin[iadmin];

      TEST_EXIT_DBG(compressAdmin)("no admin[%d] in mesh\n", iadmin);
379 380 381
      
      if ((size = compressAdmin->getSize()) < 1) 
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
382

383 384
      if (compressAdmin->getUsedDOFs() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
385

386 387
      if (compressAdmin->getHoleCount() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
388
  
389 390 391 392 393 394 395 396
      newDOF.resize(size);
      
      compressAdmin->compress(newDOF);
      
      if (preserveCoarseDOFs) {
	fill_flag = Mesh::CALL_EVERY_EL_PREORDER | Mesh::FILL_NOTHING;
      } else {
	fill_flag = Mesh::CALL_LEAF_EL | Mesh::FILL_NOTHING;
397
      }
398 399 400 401 402 403
      
      traverse( -1, fill_flag, newDOFFct1);
      traverse( -1, fill_flag, newDOFFct2);
      
      newDOF.resize(0);
    }   
404 405 406 407 408
  }


  DegreeOfFreedom *Mesh::getDOF(GeoIndex position)
  {
409
    FUNCNAME("Mesh::getDOF()");
410

411
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
412
      ("unknown position %d\n", position);
413

414 415 416
    int ndof = getNumberOfDOFs(position);
    if (ndof <= 0) 
      return(NULL);
417

418
    DegreeOfFreedom *dof = GET_MEMORY(DegreeOfFreedom, ndof);
419

420 421
    for (int i = 0; i < getNumberOfDOFAdmin(); i++) {
      const DOFAdmin *localAdmin = &getDOFAdmin(i);
422
      TEST_EXIT_DBG(localAdmin)("no admin[%d]\n", i);
423 424 425 426
      
      int n  = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
427
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
428 429 430
      
      for (int j = 0; j < n; j++) {
	dof[n0 + j] = const_cast<DOFAdmin*>(localAdmin)->getDOFIndex();
431
      }
432
    }
433 434 435 436 437 438 439
  
    return(dof);
  }


  DegreeOfFreedom **Mesh::createDOFPtrs()
  {
440
    FUNCNAME("Mesh::createDOFPtrs()");
441 442 443 444

    if (nNodeEl <= 0)
      return(NULL);

445 446
    DegreeOfFreedom **ptrs = GET_MEMORY(DegreeOfFreedom*, nNodeEl);
    for (int i = 0; i < nNodeEl; i++)
447 448 449 450 451 452 453
      ptrs[i] = NULL;

    return(ptrs);
  }

  void Mesh::freeDOFPtrs(DegreeOfFreedom **ptrs)
  {
454
    FUNCNAME("Mesh::freeDOFPtrs()");
455

456
    TEST_EXIT_DBG(ptrs)("ptrs=NULL\n");
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

    if (nNodeEl <= 0)
      return;
  
    FREE_MEMORY(ptrs, DegreeOfFreedom*, nNodeEl);
  }


  const DOFAdmin *Mesh::createDOFAdmin(const ::std::string& lname,DimVec<int> lnDOF)
  {
    FUNCNAME("Mesh::createDOFAdmin");

    DOFAdmin         *localAdmin;
    int              i;

    localAdmin=NEW DOFAdmin(this,lname);

    for (i = 0; i < dim+1; i++)
      localAdmin->setNumberOfDOFs(i,lnDOF[i]);

    addDOFAdmin(localAdmin);

    return(localAdmin);
  }





  // int Mesh::macroType(const ::std::string& filename, const ::std::string& type)
  // {
  //   const char *fn, *t;

  //   if (3==dim) return 0;
  
  //   if (filename.size() <= type.size())
  //     return(false);

  //   fn = filename.data();
  //   while (*fn) fn++;
  //   t = type.data();
  //   while (*t) t++;

  //   while (t != type  &&  *t == *fn) t--;
  
  //   return(t == type);
  // }

  const DOFAdmin* Mesh::getVertexAdmin() const
  {
    int       i;
    const DOFAdmin *localAdmin = NULL;

    for (i = 0; i < static_cast<int>(admin.size()); i++)
      {
	if (admin[i]->getNumberOfDOFs(VERTEX))
	  {
	    if (!localAdmin)  
	      localAdmin = admin[i];
	    else if (admin[i]->getSize() < localAdmin->getSize())
	      localAdmin = admin[i];
	  }
      }
    return(localAdmin);
  }

  void Mesh::freeDOF(DegreeOfFreedom* dof, GeoIndex position)
  {
    FUNCNAME("Mesh::freeDOF");
    DOFAdmin *localAdmin;
    int     i, j, n, n0, ndof;

529
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
      ("unknown position %d\n",position);

    ndof = nDOF[position];
    if (ndof) 
      {
	if (!dof)
	  {
	    MSG("dof = NULL, but ndof=%d\n", ndof);
	    return;
	  }
      }
    else
      {
	if (dof)
	  {
	    MSG("dof != NULL, but ndof=0\n");
	  }
	return;
      }

550
    TEST_EXIT_DBG(ndof <= MAX_DOF)
551 552 553 554 555 556 557 558 559
      ("ndof too big: ndof=%d, MAX_DOF=%d\n",ndof,MAX_DOF);

    for (i = 0; i < static_cast<int>(admin.size()); i++)
      {
	localAdmin = admin[i];

	n  = localAdmin->getNumberOfDOFs(position);
	n0 = localAdmin->getNumberOfPreDOFs(position);

560
	TEST_EXIT_DBG(n+n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

	for (j = 0; j < n; j++)
	  {
	    localAdmin->freeDOFIndex(dof[n0+j]);
	  }
      }

    FREE_MEMORY(dof, DegreeOfFreedom, ndof);
    return;  
  }

  void Mesh::freeElement(Element* el)
  {
    freeDOFPtrs(const_cast<DegreeOfFreedom**>(el->getDOF()));
    DELETE el;
  }


  Element* Mesh::createNewElement(Element *parent)
  {
    FUNCNAME("Mesh::createNewElement()");
582 583

    TEST_EXIT_DBG(elementPrototype)("no element prototype\n");
584 585 586

    Element *el = parent ? parent->clone() : elementPrototype->clone();
  
587
    if (!parent && elementDataPrototype) {
588 589 590 591 592 593 594 595
      el->setElementData(elementDataPrototype->clone()); 
    } else {
      el->setElementData(NULL); // must be done in ElementData::refineElementData()
    }

    return el;
  }

596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
  ElInfo* Mesh::createNewElInfo()
  {
    switch(dim) {
    case 1:
      return NEW ElInfo1d(this);
      break;
    case 2:
      return NEW ElInfo2d(this);
      break;
    case 3:
      return NEW ElInfo3d(this);
      break;
    default:
      ERROR_EXIT("invalid dim\n");
      return NULL;
    };
  }



  bool Mesh::findElInfoAtPoint(const WorldVector<double>& xy,
			       ElInfo *el_info,
			       DimVec<double>&    bary,
			       const MacroElement      *start_mel,
			       const WorldVector<double> *xy0,
			       double            *sp)
  {
    static const MacroElement *mel = NULL;
    DimVec<double> lambda(dim, NO_INIT);
    ElInfo *mel_info = NULL;

    mel_info = createNewElInfo();

    if (start_mel != NULL)
      mel = start_mel;
    else
633
      if ((mel == NULL) || (mel->getElement()->getMesh() != this))
634 635 636
	mel = *(macroElements.begin());

    mel_info->setFillFlag(Mesh::FILL_COORDS);
637
    g_xy = &xy;
638
    g_xy0 = xy0;
639
    g_sp = sp;
640 641 642

    mel_info->fillMacroInfo(mel);

643
    int k;
644 645 646 647 648 649 650 651 652 653
    while ((k = mel_info->worldToCoord(xy, &lambda)) >= 0) {
      if (mel->getNeighbour(k)) {
	mel = mel->getNeighbour(k);
	mel_info->fillMacroInfo(mel);
	continue;
      }
      break;
    }

    /* now, descend in tree to find leaf element at point */
654 655 656 657
    bool inside = findElementAtPointRecursive(mel_info, lambda, k, el_info);
    for (int i = 0; i <= dim; i++) {
      bary[i] = final_lambda[i];
    }
658 659 660 661 662 663 664
  
    DELETE mel_info;

    return(inside);
  }

  bool Mesh::findElementAtPoint(const WorldVector<double>&  xy,
665 666
				Element **elp, 
				DimVec<double>& bary,
667
				const MacroElement *start_mel,
668 669
				const WorldVector<double> *xy0,
				double *sp)
670
  {
671 672
    ElInfo *el_info = createNewElInfo();
    int val = findElInfoAtPoint(xy, el_info, bary, start_mel, xy0, sp);
673 674 675 676 677 678 679 680 681 682

    *elp = el_info->getElement();

    DELETE el_info;

    return(val);
  }



683
  bool Mesh::findElementAtPointRecursive(ElInfo *el_info,
684
					 const DimVec<double>& lambda,
685
					 int outside,
686 687
					 ElInfo* final_el_info)
  {
688
    FUNCNAME("Mesh::findElementAtPointRecursive()");
689 690
    Element *el = el_info->getElement();
    DimVec<double> c_lambda(dim, NO_INIT);
691 692
    int inside;
    int ichild, c_outside;
693 694 695 696

    if (el->isLeaf()) {
      *final_el_info = *el_info;
      if (outside < 0) {
697 698 699 700
	for (int i = 0; i <= dim; i++) {
	  final_lambda[i] = lambda[i];
	}

701
	return(true);
702 703 704 705 706 707 708 709 710 711 712 713
      }  else {  /* outside */
	if (g_xy0) { /* find boundary point of [xy0, xy] */
	  el_info->worldToCoord(*(g_xy0), &c_lambda);
	  double s = lambda[outside] / (lambda[outside] - c_lambda[outside]);
	  for (int i = 0; i <= dim; i++) {
	    final_lambda[i] = s * c_lambda[i] + (1.0-s) * lambda[i];
	  }
	  if (g_sp) {
	    *(g_sp) = s;
	  }
	  if (dim == 3) 
	    MSG("outside finest level on el %d: s=%.3e\n", el->getIndex(), s);
714

715
	  return(false);  /* ??? */
716
	}
717 718
	else return(false);
      }
719 720
    }

721
    ElInfo *c_el_info = createNewElInfo();
722

723
    if (dim == 1) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (outside >= 0) {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (outside >= 0)  {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[1] = lambda[1] - lambda[0];
	  c_lambda[0] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 1 */

745
    if (dim == 2) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 0\n");
	  }
	} else {
	  c_lambda[0] = lambda[2];
	  c_lambda[1] = lambda[0] - lambda[1];
	  c_lambda[2] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 1\n");
	  }
	} else {
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[2];
	  c_lambda[2] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 2 */

773
    if (dim == 3) {
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
      if (el->isNewCoordSet()) {
	if (lambda[0] >= lambda[1])
	  ichild = 0;
	else
	  ichild = 1;
	c_el_info->fillElInfo(ichild, el_info);
	c_outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);

	if (c_outside>=0) {  /* test is other child is better... */
	  DimVec<double> c_lambda2(dim, NO_INIT);
	  int c_outside2;
	  ElInfo *c_el_info2 = createNewElInfo();

	  c_el_info2->fillElInfo(1-ichild, el_info);
	  c_outside2 = c_el_info2->worldToCoord(*(g_xy), &c_lambda2);

	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      ichild, c_outside, c_lambda[0],c_lambda[1],c_lambda[2],c_lambda[3]);
	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      1-ichild, c_outside2, c_lambda2[0],c_lambda2[1],c_lambda2[2],
	      c_lambda2[3]);

	  if ((c_outside2 < 0) || (c_lambda2[c_outside2] > c_lambda[c_outside])) {
797 798 799
	    for (int i = 0; i <= dim; i++) {
	      c_lambda[i] = c_lambda2[i];
	    }
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	    c_outside = c_outside2;
	    *c_el_info = *c_el_info2;
	    ichild = 1 - ichild;
	  }
	  DELETE c_el_info2;
	}
	outside = c_outside;
      } else {  /* no new_coord */
	if (lambda[0] >= lambda[1]) {
	  c_el_info->fillElInfo(0, el_info);
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][2]];
	  c_lambda[3] = 2.0 * lambda[1];
	} else {
	  c_el_info->fillElInfo(1, el_info);
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][2]];
	  c_lambda[3] = 2.0 * lambda[0];
	}
      }
    }  /* DIM == 3 */

    inside = findElementAtPointRecursive(c_el_info, c_lambda, outside, 
					 final_el_info);
    DELETE c_el_info;

    return(inside); 
  }


  void Mesh::setDiameter(const WorldVector<double>& w) { diam = w; }

  void Mesh::setDiameter(int i, double w) { diam[i] = w; }


  int Mesh::newDOFFct1(ElInfo* ei) {
    ei->getElement()->newDOFFct1(compressAdmin);
    return 0;
  }

  int Mesh::newDOFFct2(ElInfo* ei) {
    ei->getElement()->newDOFFct2(compressAdmin);
    return 0;
  }

  void Mesh::serialize(::std::ostream &out)
  {
    serializedDOFs.clear();

    // write name
    out << name << ::std::endl;

    // write dim
    out.write(reinterpret_cast<const char*>(&dim), sizeof(int));

    // write nVertices
    out.write(reinterpret_cast<const char*>(&nVertices), sizeof(int));

    // write nEdges
    out.write(reinterpret_cast<const char*>(&nEdges), sizeof(int));

    // write nLeaves
    out.write(reinterpret_cast<const char*>(&nLeaves), sizeof(int));

    // write nElements
    out.write(reinterpret_cast<const char*>(&nElements), sizeof(int));

    // write nFaces
    out.write(reinterpret_cast<const char*>(&nFaces), sizeof(int));

    // write maxEdgeNeigh
    out.write(reinterpret_cast<const char*>(&maxEdgeNeigh), sizeof(int));

    // write diam
    diam.serialize(out);

    // write preserveCoarseDOFs
    out.write(reinterpret_cast<const char*>(&preserveCoarseDOFs), sizeof(bool));

    // write nDOFEl
    out.write(reinterpret_cast<const char*>(&nDOFEl), sizeof(int));

    // write nDOF
    nDOF.serialize(out);

    // write nNodeEl
    out.write(reinterpret_cast<const char*>(&nNodeEl), sizeof(int));

    // write node
    node.serialize(out);

    // write admins
    int i, size = static_cast<int>(admin.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      admin[i]->serialize(out);
    }

    // write macroElements
    size = static_cast<int>(macroElements.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      macroElements[i]->serialize(out);
    }

    // write elementIndex
    out.write(reinterpret_cast<const char*>(&elementIndex), sizeof(int));

    // write initialized
    out.write(reinterpret_cast<const char*>(&initialized), sizeof(bool));

    serializedDOFs.clear();
  }

  void Mesh::deserialize(::std::istream &in)
  {
    serializedDOFs.clear();

    // read name
    in >> name;
    in.get();

    // read dim
    int oldVal = dim;
    in.read(reinterpret_cast<char*>(&dim), sizeof(int));
931
    TEST_EXIT_DBG((oldVal == 0) || (dim == oldVal))("invalid dimension\n");
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

    // read nVertices
    in.read(reinterpret_cast<char*>(&nVertices), sizeof(int));

    // read nEdges
    in.read(reinterpret_cast<char*>(&nEdges), sizeof(int));

    // read nLeaves
    in.read(reinterpret_cast<char*>(&nLeaves), sizeof(int));

    // read nElements
    in.read(reinterpret_cast<char*>(&nElements), sizeof(int));

    // read nFaces
    in.read(reinterpret_cast<char*>(&nFaces), sizeof(int));

    // read maxEdgeNeigh
    in.read(reinterpret_cast<char*>(&maxEdgeNeigh), sizeof(int));

    // diam
    diam.deserialize(in);

    // read preserveCoarseDOFs
    in.read(reinterpret_cast<char*>(&preserveCoarseDOFs), sizeof(bool));

    // read nDOFEl
    oldVal = nDOFEl;
    in.read(reinterpret_cast<char*>(&nDOFEl), sizeof(int));
960
    TEST_EXIT_DBG((oldVal == 0) || (nDOFEl == oldVal))("invalid nDOFEl\n");
961 962 963 964 965 966 967

    // read nDOF
    nDOF.deserialize(in);

    // read nNodeEl
    oldVal = nNodeEl;
    in.read(reinterpret_cast<char*>(&nNodeEl), sizeof(int));
968
    TEST_EXIT_DBG((oldVal == 0) || (nNodeEl == oldVal))("invalid nNodeEl\n");
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

    // read node
    node.deserialize(in);

    // read admins
    int i, size;
    in.read(reinterpret_cast<char*>(&size), sizeof(int));
    admin.resize(size, NULL);
    for (i = 0; i < size; i++) {
      if (!admin[i]) {
	admin[i] = NEW DOFAdmin(this);
      }
      admin[i]->deserialize(in);
    }

    // read macroElements
    in.read(reinterpret_cast<char*>(&size), sizeof(int));

    ::std::vector< ::std::vector<int> > neighbourIndices(size);

    for (i = 0; i < static_cast<int>(macroElements.size()); i++) {
      if (macroElements[i]) {
	DELETE macroElements[i];
      }
    }
    macroElements.resize(size);
    for(i = 0; i < size; i++) {
      macroElements[i] = NEW MacroElement(dim);
      macroElements[i]->writeNeighboursTo(&(neighbourIndices[i]));
      macroElements[i]->deserialize(in);
    }

    // read elementIndex
    in.read(reinterpret_cast<char*>(&elementIndex), sizeof(int));

    // read initialized
    in.read(reinterpret_cast<char*>(&initialized), sizeof(bool));

    // set neighbour pointer in macro elements
    int j, neighs = getGeo(NEIGH);
    for(i = 0; i < static_cast<int>(macroElements.size()); i++) {
      for(j = 0; j < neighs; j++) {
	int index = neighbourIndices[i][j];
	if(index != -1) {
	  macroElements[i]->setNeighbour(j, macroElements[index]);
	} else {
	  macroElements[i]->setNeighbour(j, NULL);
	}
      }
    }

    // set mesh pointer in elements
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
    while(elInfo) {
      elInfo->getElement()->setMesh(this);
      elInfo = stack.traverseNext(elInfo);
    }

    serializedDOFs.clear();
  }

  void Mesh::initialize() 
  {
    ::std::string macroFilename("");
    ::std::string valueFilename("");
    ::std::string periodicFile("");
    int check = 1;

    GET_PARAMETER(0, name + "->macro file name",  &macroFilename);
    GET_PARAMETER(0, name + "->value file name",  &valueFilename);
    GET_PARAMETER(0, name + "->periodic file", &periodicFile);
    GET_PARAMETER(0, name + "->check", "%d", &check);
    GET_PARAMETER(0, name + "->preserve coarse dofs", "%d", &preserveCoarseDOFs);

    if (macroFilename.length()) {
      macroFileInfo_ = MacroReader::readMacro(macroFilename.c_str(), 
					      this,
					      periodicFile == "" ? NULL : periodicFile.c_str(),
					      check);

      // If there is no value file which should be written, we can delete
      // the information of the macro file.
      if (!valueFilename.length()) {
	clearMacroFileInfo();
      }
    }

    initialized = true;
  }

  bool Mesh::associated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
    ::std::map<BoundaryType, VertexVector*>::iterator it;
    ::std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
    for (it = periodicAssociations.begin(); it != end; ++it) {
      if ((*(it->second))[dof1] == dof2)
	return true;
    }
    return false;
  }

  bool Mesh::indirectlyAssociated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
    ::std::vector<DegreeOfFreedom> associatedToDOF1;
    ::std::map<BoundaryType, VertexVector*>::iterator it;
    ::std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
    DegreeOfFreedom dof, assDOF;

    associatedToDOF1.push_back(dof1);
Thomas Witkowski's avatar
Thomas Witkowski committed
1077 1078 1079
    for (it = periodicAssociations.begin(); it != end; ++it) {
      int size = static_cast<int>(associatedToDOF1.size());
      for (int i = 0; i < size; i++) {
1080 1081
	dof = associatedToDOF1[i];
	assDOF = (*(it->second))[dof];
Thomas Witkowski's avatar
Thomas Witkowski committed
1082
	if (assDOF == dof2) {
1083 1084
	  return true;
	} else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1085 1086
	  if (assDOF != dof) 
	    associatedToDOF1.push_back(assDOF);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	}
      }
    }
    return false;
  }

  void Mesh::clearMacroFileInfo()
  {
    macroFileInfo_->clear(getNumberOfEdges(),
			  getNumberOfVertices());
    DELETE macroFileInfo_;
  }
}