ElementObjectDatabase.h 18.2 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
Thomas Witkowski's avatar
Thomas Witkowski committed
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


Thomas Witkowski's avatar
Thomas Witkowski committed
20

21
/** \file ElementObjectDatabase.h */
Thomas Witkowski's avatar
Thomas Witkowski committed
22

23
24
#ifndef AMDIS_ELEMENT_OBJECT_DATABASE_H
#define AMDIS_ELEMENT_OBJECT_DATABASE_H
Thomas Witkowski's avatar
Thomas Witkowski committed
25
26
27
28
29
30

#include <map>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>

31
#include "AMDiS_fwd.h"
32
#include "Containers.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
33
34
#include "Global.h"
#include "Boundary.h"
35
#include "Serializer.h"
36
#include "FiniteElemSpace.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
37
38
39

namespace AMDiS {

40
41
  using namespace std;

42
  /// Just to templatize the typedef.
43
  template<typename T>
44
  struct PerBoundMap {
45
46
47
48
    typedef map<pair<T, T>, BoundaryType> type;
    typedef typename type::iterator iterator;
  };

49
50

  /// Defines one element object. This may be either a vertex, edge or face.
Thomas Witkowski's avatar
Thomas Witkowski committed
51
  struct ElementObjectData {
52
    ElementObjectData(int a = -1, int b = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
53
      : elIndex(a),
54
	ithObject(b)
Thomas Witkowski's avatar
Thomas Witkowski committed
55
    {}
56
57

    /// Index of the element this object is part of.
Thomas Witkowski's avatar
Thomas Witkowski committed
58
59
    int elIndex;
    
60
    /// Index of the object within the element.
Thomas Witkowski's avatar
Thomas Witkowski committed
61
62
    int ithObject;
    
63
    /// Write this element object to disk.
64
    void serialize(ostream &out) const
65
66
67
68
69
    {
      SerUtil::serialize(out, elIndex);
      SerUtil::serialize(out, ithObject);
    }

70
    /// Read this element object from disk.
71
    void deserialize(istream &in)
72
73
74
75
76
    {
      SerUtil::deserialize(in, elIndex);
      SerUtil::deserialize(in, ithObject);
    }

77
    /// Compare this element object with another one.
78
79
    bool operator==(ElementObjectData& cmp) const
    {
80
      return (elIndex == cmp.elIndex && ithObject == cmp.ithObject);
81
82
    }

83
    /// Define a strict order on element objects.
84
85
    bool operator<(const ElementObjectData& rhs) const
    {
86
87
      return (elIndex < rhs.elIndex || 
	      (elIndex == rhs.elIndex && ithObject < rhs.ithObject));
88
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
89
90
91
92
  };



93
94
  /** \brief
   * This class is a database of element objects. An element object is either a
95
96
97
98
99
100
101
   * vertex, edge or the face of a specific element. This database is used to
   * store all objects of all elements of a mesh. The information is stored in a
   * way that makes it possible to identify all elements, which have a given
   * vertex, edge or face in common. If is is known which element is owned by 
   * which rank in parallel computations, it is thus possible to get all interior
   * boundaries on object level. This is required, because two elements may share
   * a common vertex without beging neighbours in the definition of AMDiS.
102
   */
103
  class ElementObjectDatabase {
Thomas Witkowski's avatar
Thomas Witkowski committed
104
  public:
105
    ElementObjectDatabase()
106
      : mesh(NULL),
107
	iterGeoPos(CENTER)
Thomas Witkowski's avatar
Thomas Witkowski committed
108
109
    {}

110

111
112
    /// Set the mesh that should be used for the database.
    void setMesh(Mesh *m)
Thomas Witkowski's avatar
Thomas Witkowski committed
113
    {
114
      mesh = m;
115
116
117
    }


118
    /** \brief
119
120
121
     * Adds an element to the object database. If the element is part of a
     * periodic boundary, all information about subobjects of the element on
     * this boundary are collected.
122
123
124
125
126
127
128
129
130
     *
     * \param[in]  elInfo    ElInfo object of the element. 
     */
    void addElement(ElInfo *elInfo);


    /** \brief
     * Creates final data of the periodic boundaries. Must be called after all
     * elements of the mesh are added to the object database. Then this functions
131
132
133
134
135
     * search for indirectly connected vertices in periodic boundaries. This is
     * only the case, if there are more than one boundary conditions. Then, e.g., 
     * in 2D, all edges of a square are iterectly connected. In 3D, if the macro 
     * mesh is a box, all eight vertex nodes and always four of the 12 edges are 
     * indirectly connected.
136
     */
137
    void createPeriodicData(const FiniteElemSpace *feSpace);
138
139
140


    /** \brief
141
142
143
     * Create for a filled object database the membership information for all
     * element objects. An object is owned by a rank, if the rank has the
     * heighest rank number of all ranks where the object is part of.
144
     *
145
146
     * \param[in]  macroElementRankMap   Maps to each macro element of the mesh
     *                                   the rank that owns this macro element.
147
     */
148
149
    void createRankData(map<int, int>& macroElementRankMap,
			MeshLevelData& levelData);
Thomas Witkowski's avatar
Thomas Witkowski committed
150

151

152
153
154
155
156
157
158
159
160
161
162
163
164
    /** \brief
     * Creates on all boundaries the reverse mode flag.
     *
     * \param[in] feSpace         An arbitrary FE space defined on the mesh. 
     *                            Is used to get the orientation of the DOFs on 
     *                            elements.
     * \param[in] elIndexMap      Maps an element index to the pointer to the 
     *                            element.
     * \param[in] elIndexTypeMap  Maps an element index to its type id (only
     *                            relevant in 3D).
     */
    void createReverseModeData(const FiniteElemSpace* feSpace,
			       map<int, Element*> &elIndexMap,
165
166
			       map<int, int> &elIndexTypeMap);

167

168
    /** \brief
169
170
171
     * Iterates over all elements for one geometrical index, i.e., over all
     * vertices, edges or faces in the mesh. The function returns true, if the
     * result is valid. Otherwise the iterator is at the end position.
172
     *
173
174
     * \param[in]  pos   Must be either VERTEX, EDGE or FACE and defines the
     *                   elements that should be traversed.
175
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
176
177
    bool iterate(GeoIndex pos)
    {
178
179
180
      // CENTER marks the variable "iterGeoPos" to be in an undefined state. I.e.,
      // there is no iteration that is actually running.

Thomas Witkowski's avatar
Thomas Witkowski committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
      if (iterGeoPos == CENTER) {
	iterGeoPos = pos;
	switch (iterGeoPos) {
	case VERTEX:
	  vertexIter = vertexInRank.begin();
	  break;
	case EDGE:
	  edgeIter = edgeInRank.begin();
	  break;
	case FACE:
	  faceIter = faceInRank.begin();
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      } else {
	switch (iterGeoPos) {
	case VERTEX:
	  ++vertexIter;
	  break;
	case EDGE:
	  ++edgeIter;
	  break;
	case FACE:
	  ++faceIter;
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      }

      switch (iterGeoPos) {
      case VERTEX:
	if (vertexIter == vertexInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case EDGE:
	if (edgeIter == edgeInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case FACE:
	if (faceIter == faceInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      default:
	ERROR_EXIT("Should not happen!\n");	
      }

      return true;
    }


239
    /// Returns the data of the current iterator position.
240
    map<int, ElementObjectData>& getIterateData()
Thomas Witkowski's avatar
Thomas Witkowski committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexIter->second;
	break;
      case EDGE:
	return edgeIter->second;
	break;
      case FACE:
	return faceIter->second;
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return faceIter->second;
      }
    }


261
    /// Returns the rank owner of the current iterator position.
262
    int getIterateOwner(int level)
Thomas Witkowski's avatar
Thomas Witkowski committed
263
264
265
    {
      switch (iterGeoPos) {
      case VERTEX:
266
	return vertexOwner[vertexIter->first][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
267
268
	break;
      case EDGE:
269
	return edgeOwner[edgeIter->first][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
270
271
	break;
      case FACE:
272
	return faceOwner[faceIter->first][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
273
274
275
276
277
278
279
280
281
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return -1;
      }
    }

282

283
    /// Returns the rank owner of a vertex DOF.
284
    int getOwner(DegreeOfFreedom vertex, int level)
Thomas Witkowski's avatar
Thomas Witkowski committed
285
    {
286
      return vertexOwner[vertex][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
287
288
    }

289
    /// Returns the rank owner of an edge.
290
    int getOwner(DofEdge edge, int level)
Thomas Witkowski's avatar
Thomas Witkowski committed
291
    {
292
      return edgeOwner[edge][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
293
294
    }

295
    /// Returns the rank owner of an face.
296
    int getOwner(DofFace face, int level)
Thomas Witkowski's avatar
Thomas Witkowski committed
297
    {
298
      return faceOwner[face][level];
Thomas Witkowski's avatar
Thomas Witkowski committed
299
300
    }

301

302
    /// Checks if a given vertex DOF is in a given rank.
303
304
305
306
307
    int isInRank(DegreeOfFreedom vertex, int rank)
    {
      return (vertexInRank[vertex].count(rank));
    }

308
    /// Checks if a given edge is in a given rank.
309
310
311
312
313
    int isInRank(DofEdge edge, int rank)
    {
      return (edgeInRank[edge].count(rank));
    }

314
    /// Checks if a given face is in a given rank.
315
316
317
318
319
320
    int isInRank(DofFace face, int rank)
    {
      return (faceInRank[face].count(rank));
    }


321
322
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
323
    vector<ElementObjectData>& getElements(DegreeOfFreedom vertex)
Thomas Witkowski's avatar
Thomas Witkowski committed
324
325
326
327
    {
      return vertexElements[vertex];
    }

328
    /// Returns a vector with all macro elements that have a given edge in common.
329
    vector<ElementObjectData>& getElements(DofEdge edge)
Thomas Witkowski's avatar
Thomas Witkowski committed
330
331
332
333
    {
      return edgeElements[edge];
    }

334
    /// Returns a vector with all macro elements that have a given face in common.
335
    vector<ElementObjectData>& getElements(DofFace face)
Thomas Witkowski's avatar
Thomas Witkowski committed
336
337
338
339
    {
      return faceElements[face];
    }

340

341
342
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    vector<ElementObjectData>& getElementsVertex(int elIndex, int ithVertex)
    {
      ElementObjectData elObj(elIndex, ithVertex);
      DegreeOfFreedom vertex = vertexLocalMap[elObj];
      return vertexElements[vertex];
    }
    
    /// Returns a vector with all macro elements that have a given edge in common.
    vector<ElementObjectData>& getElementsEdge(int elIndex, int ithEdge)
    {
      ElementObjectData elObj(elIndex, ithEdge);
      DofEdge edge = edgeLocalMap[elObj];
      return edgeElements[edge];
    }

    /// Returns a vector with all macro elements that have a given face in common.
    vector<ElementObjectData>& getElementsFace(int elIndex, int ithFace)
    {
      ElementObjectData elObj(elIndex, ithFace);
      DofFace face = faceLocalMap[elObj];
      return faceElements[face];
    }


367
368
369
    
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given vertex DOF in common.
370
    map<int, ElementObjectData>& getElementsInRank(DegreeOfFreedom vertex)
371
372
373
374
    {
      return vertexInRank[vertex];
    }

375
376
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given edge in common.
377
    map<int, ElementObjectData>& getElementsInRank(DofEdge edge)
378
379
380
381
    {
      return edgeInRank[edge];
    }

382
383
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given face in common.
384
    map<int, ElementObjectData>& getElementsInRank(DofFace face)
385
386
387
388
    {
      return faceInRank[face];
    }

389
    /// Returns to an element object data the appropriate vertex DOF.
390
391
    DegreeOfFreedom getVertexLocalMap(ElementObjectData &data)
    {
392
393
      TEST_EXIT_DBG(vertexLocalMap.count(data))("Should not happen!\n");

394
395
396
      return vertexLocalMap[data];
    }

397
    /// Returns to an element object data the appropriate edge.
398
399
    DofEdge getEdgeLocalMap(ElementObjectData &data)
    {
400
401
      TEST_EXIT_DBG(edgeLocalMap.count(data))("Should not happen!\n");

402
403
404
      return edgeLocalMap[data];
    }

405
    /// Returns to an element object data the appropriate face.
406
407
    DofFace getFaceLocalMap(ElementObjectData &data)
    {
408
409
      TEST_EXIT_DBG(faceLocalMap.count(data))("Should not happen!\n");

410
411
412
      return faceLocalMap[data];
    }

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    PerBoundMap<DegreeOfFreedom>::type& getPeriodicVertices()
    {
      return periodicVertices;
    }

    PerBoundMap<DofEdge>::type& getPeriodicEdges()
    {
      return periodicEdges;
    }

    PerBoundMap<DofFace>::type& getPeriodicFaces()
    {
      return periodicFaces;
    }

428
429
    inline bool getEdgeReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
430
    {
431
432
433
      if (mesh->getDim() == 2)
	return true;

434
435
436
437
438
439
      TEST_EXIT_DBG(edgeReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return edgeReverseMode[make_pair(obj0, obj1)];
    }

440
441
    inline bool getFaceReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
442
443
444
445
446
447
448
    {
      TEST_EXIT_DBG(faceReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return faceReverseMode[make_pair(obj0, obj1)];
    }

449
450
451
452
453
454
    /// Returns true if there is periodic data.
    bool hasPeriodicData()
    {
      return (periodicVertices.size() != 0);
    }

455
456
457
458
459
460
461
462
    /// Returns true if the given boundary type is larger or equal to the smallest
    /// periodic boundary ID in mesh. See \ref smallestPeriodicBcType for more
    /// information.
    bool isValidPeriodicType(BoundaryType t) const
    {
      return (t >= smallestPeriodicBcType);
    }

463
    /// Write the element database to disk.
464
    void serialize(ostream &out);
465
466
    
    /// Read the element database from disk.
467
    void deserialize(istream &in);
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  protected:
    /// Adds the i-th DOF vertex of an element to the object database.
    void addVertex(Element *el, int ith)
    {
      DegreeOfFreedom vertex = el->getDof(ith, 0);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      vertexElements[vertex].push_back(elObj);
      vertexLocalMap[elObj] = vertex;
    }

    /// Adds the i-th edge of an element to the object database.
    void addEdge(Element *el, int ith)
    {
      DofEdge edge = el->getEdge(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      edgeElements[edge].push_back(elObj);
      edgeLocalMap[elObj] = edge;
    }

    /// Adds the i-th face of an element to the object database.
    void addFace(Element *el, int ith)
    {
      DofFace face = el->getFace(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      faceElements[face].push_back(elObj);
      faceLocalMap[elObj] = face;
    }

503
    BoundaryType getNewBoundaryType(DOFAdmin *admin);
504

505
506
507
    BoundaryType provideConnectedPeriodicBoundary(DOFAdmin *admin,
						  BoundaryType b0, 
						  BoundaryType b1);
508
509

    /// Some auxiliary function to write the element object database to disk.
510
    void serialize(ostream &out, vector<ElementObjectData>& elVec);
511

512
    /// Some auxiliary function to read the element object database from disk.
513
    void deserialize(istream &in, vector<ElementObjectData>& elVec);
514

515
    /// Some auxiliary function to write the element object database to disk.
516
    void serialize(ostream &out, map<int, ElementObjectData>& data);
517

518
    /// Some auxiliary function to read the element object database from disk.
519
    void deserialize(istream &in, map<int, ElementObjectData>& data);
520

Thomas Witkowski's avatar
Thomas Witkowski committed
521
  private:
522
523
    /// The mesh that is used to store all its element information in 
    /// the database.
524
525
526
    Mesh *mesh;

    /// Maps to each vertex DOF all element objects that represent this vertex.
527
    map<DegreeOfFreedom, vector<ElementObjectData> > vertexElements;
528
529

    /// Maps to each edge all element objects that represent this edge.
530
    map<DofEdge, vector<ElementObjectData> > edgeElements;
Thomas Witkowski's avatar
Thomas Witkowski committed
531

532
533
    /// Maps to each face all element objects that represent this edge.
    map<DofFace, vector<ElementObjectData> > faceElements;
534

535
536
    
    /// Maps to an element object the corresponding vertex DOF.
537
    map<ElementObjectData, DegreeOfFreedom> vertexLocalMap;
538
539

    /// Maps to an element object the corresponding edge.
540
    map<ElementObjectData, DofEdge> edgeLocalMap;
541
542

    /// Maps to an element object the corresponding face.
543
    map<ElementObjectData, DofFace> faceLocalMap;
544

545
546
    /// Maps from level to rank number
    typedef map<int, int> LevelRank;
547

548
    /// Defines for all vertex DOFs the rank that ownes this vertex DOF.
549
    map<DegreeOfFreedom, LevelRank> vertexOwner;
550
551

    /// Defines for all edges the rank that ownes this edge.
552
    map<DofEdge, LevelRank> edgeOwner;
553
554

    /// Defines for all faces the rank that ownes this face.
555
    map<DofFace, LevelRank> faceOwner;
Thomas Witkowski's avatar
Thomas Witkowski committed
556

557

558
559
    /// Defines to each vertex DOF a map that maps to each rank number the element
    /// objects that have this vertex DOF in common.
560
    map<DegreeOfFreedom, map<int, ElementObjectData> > vertexInRank;
561

562
563
    /// Defines to each edge a map that maps to each rank number the element 
    /// objects that have this edge in common.
564
    map<DofEdge, map<int, ElementObjectData> > edgeInRank;
565

566
567
    /// Defines to each face a map that maps to each rank number the element 
    /// objects that have this face in common.
568
    map<DofFace, map<int, ElementObjectData> > faceInRank;
Thomas Witkowski's avatar
Thomas Witkowski committed
569

570
571

    /// Vertex iterator to iterate over \ref vertexInRank
572
    map<DegreeOfFreedom, map<int, ElementObjectData> >::iterator vertexIter;
573
574

    /// Edge iterator to iterate over \ref edgeInRank
575
    map<DofEdge, map<int, ElementObjectData> >::iterator edgeIter;
576
577

    /// Face iterator to iterate over \ref faceInRank
578
    map<DofFace, map<int, ElementObjectData> >::iterator faceIter;
Thomas Witkowski's avatar
Thomas Witkowski committed
579

580
581
582
583
584

    /// Defines the geometrical iteration index of the iterators. I.e., the value
    /// is either VERTEX, EDGE or FACE and the corresponding element objects are
    /// traversed. The value CENTER is used to define a not defined states of the
    /// iterators, i.e., if no iteration is running.
Thomas Witkowski's avatar
Thomas Witkowski committed
585
    GeoIndex iterGeoPos;
586

587
    map<pair<BoundaryType, BoundaryType>, BoundaryType> bConnMap;
588

589
    /// The following three data structures store periodic DOFs, edges and faces.
590
591
592
    PerBoundMap<DegreeOfFreedom>::type periodicVertices;
    PerBoundMap<DofEdge>::type periodicEdges;
    PerBoundMap<DofFace>::type periodicFaces;
593

594
595
596
597
598
599
600
    /// Defines the smallest boudary ID for periodic boundary conditions. This is
    /// required to distinguish between "real" periodic boundaries and periodic
    /// boundary IDs that are set by the parallel algorithm for indirectly 
    /// connected boundaries.
    BoundaryType smallestPeriodicBcType;

    /// Stores to each vertex all its periodic associations.
601
    map<DegreeOfFreedom, std::set<BoundaryType> > periodicDofAssoc;
602

603
    /// Stores to each edge all its periodic associations.
604
605
606
607
608
    map<DofEdge, std::set<DofEdge> > periodicEdgeAssoc;

    map<pair<ElementObjectData, ElementObjectData>, bool> edgeReverseMode;

    map<pair<ElementObjectData, ElementObjectData>, bool> faceReverseMode;
Thomas Witkowski's avatar
Thomas Witkowski committed
609
610
611
612
613
  };

}

#endif