Element.h 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"
30
#include "AMDiS_fwd.h"
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

namespace AMDiS {

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
68
    /// private standard constructor because an Element must know his Mesh
69
    Element() {}
70

71
  public:
72
    /// constructs an Element which belongs to Mesh
73
74
    Element(Mesh *);

75
    /// copy constructor
76
77
    Element(const Element& old);

78
    /// destructor
79
80
    virtual ~Element();

81
    ///
82
83
    void deleteElementDOFs();

84
85
86
87
88
89
    /** \brief
     * Clone this Element and return a reference to it. Because also the DOFs
     * are cloned, \ref Mesh::serializedDOfs must be used.
     */
    Element* cloneWithDOFs();

90
91
92
93
    /** \name getting methods
     * \{
     */

94
    /// Returns \ref child[0]
95
    inline Element* getFirstChild() const {
96
      return child[0];
97
    }
98

99
    /// Returns \ref child[1]
100
    inline Element* getSecondChild() const {
101
      return child[1];
102
    }
103

104
    /// Returns \ref child[i], i=0,1
105
    inline Element* getChild(int i) const {
106
      TEST_EXIT_DBG(i==0 || i==1)("i must be 0 or 1\n");
107
      return child[i];
108
    }
109
110
111
112
113

    /** \brief
     * Returns true if Element is a leaf element (\ref child[0] == NULL), returns
     * false otherwise.
     */
114
    inline const bool isLeaf() const { 
115
      return (child[0] == NULL); 
116
    }
117

118
    /// Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
119
120
    const DegreeOfFreedom getDOF(int i, int j) const { 
      return dof[i][j];
121
    }
122

123
    /// Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
124
125
    const DegreeOfFreedom* getDOF(int i) const {
      return dof[i];
126
    }
127

128
    /// Returns a pointer to the DOFs of this Element
129
130
    const DegreeOfFreedom** getDOF() const {
      return const_cast<const DegreeOfFreedom**>(dof);
131
    }
132

133
    /// Returns \ref mesh of Element
134
135
    inline Mesh* getMesh() const { 
      return mesh; 
136
    }
137
138
139
140
141
142
143

    /** \brief
     * Returns \ref elementData's error estimation, if Element is a leaf element
     * and has leaf data. 
     */
    inline double getEstimation(int row) const
    {
144
      if (isLeaf()) {
145
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
146
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
147
	TEST_EXIT_DBG(ld)("leaf data not estimatable!\n");
148

149
150
151
152
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
153
    }
154
155
156
157
158
159

    /** \brief
     * Returns Element's coarsening error estimation, if Element is a leaf 
     * element and if it has leaf data and if this leaf data are coarsenable.
     */
    inline double getCoarseningEstimation(int row) {
160
      if (isLeaf()) {
161
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
162
	ElementData *ld = elementData->getElementData(COARSENABLE);
163
	TEST_EXIT_DBG(ld)("element data not coarsenable!\n");
164

165
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
166
      }
167
168
      
      return 0.0;
169
    }
170

171
    /// Returns region of element if defined, -1 else.
172
173
    int getRegion() const;

174
    /// Returns local vertex number of the j-th vertex of the i-th edge
175
176
177
178
179
180
181
    virtual int getVertexOfEdge(int i, int j) const = 0; 

    /** \brief
     * Returns local vertex number of the vertexIndex-th vertex of the
     * positionIndex-th part of type position (vertex, edge, face)
     */
    virtual int getVertexOfPosition(GeoIndex position,
182
183
				    int positionIndex,
				    int vertexIndex) const = 0;
184

185
    ///
186
187
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

188
    ///
189
190
    virtual int getEdgeOfFace(int face, int edge) const = 0;

191
    /// Returns the number of parts of type i in this element
192
193
    virtual int getGeo(GeoIndex i) const = 0;

194
    /// Returns Element's \ref mark
195
196
    inline const signed char getMark() const { 
      return mark;
197
    }
198

199
200
201
202
203
    /// Returns \ref newCoord[i]
    inline double getNewCoord(int i) const {
	TEST_EXIT_DBG(newCoord)("newCoord = NULL\n");
	return (*newCoord)[i];
    }
204

205
    /// Returns Element's \ref index
206
207
    inline int getIndex() const { 
      return index; 
208
    }
209

210
    /// Returns \ref newCoord
211
212
    inline WorldVector<double>* getNewCoord() const { 
      return newCoord; 
213
    }
214
215
216
217
218
219
220

    /** \} */

    /** \name setting methods
     * \{
     */

221
    /// Sets \ref child[0]
222
223
    virtual void setFirstChild(Element *aChild) {
      child[0] = aChild;
224
    }
225

226
    /// Sets \ref child[1]
227
228
    virtual void setSecondChild(Element *aChild) {
      child[1] = aChild;
229
    }
230

231
    /// Sets \ref elementData of Element
232
233
    void setElementData(ElementData* ed) {
      elementData = ed;
234
    }
235
236
237
238
239

    /** \brief
     * Sets \ref newCoord of Element. Needed by refinement, if Element has a
     * boundary edge on a curved boundary.
     */
240
241
    inline void setNewCoord(WorldVector<double>* coord) {
      newCoord = coord;
242
    }
243

244
    /// Sets \ref mesh.
245
246
    inline void setMesh(Mesh *m) {
      mesh = m;
247
    }
248

249
    /// Sets the pointer to the DOFs of the i-th node of Element
250
251
252
    DegreeOfFreedom* setDOF(int pos, DegreeOfFreedom* p) {
      dof[pos] = p;
      return dof[pos];
253
    }
254
255
256
257
258
259
260

    /** \brief
     * Checks whether Element is a leaf element and whether it has leaf data.
     * If the checks don't fail, leaf data's error estimation is set to est.
     */
    inline void setEstimation(double est, int row)
    {
261
      if (isLeaf()) {
262
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
263
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
264
	TEST_EXIT_DBG(ld)("leaf data not estimatable\n");
265
266
267

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
268
      } else {
269
270
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
271
    }
272
273
274
275
276
277
278

    /** \brief
     * Sets Element's coarsening error estimation, if Element is a leaf element
     * and if it has leaf data and if this leaf data are coarsenable.
     */
    inline void setCoarseningEstimation(double est, int row)
    {
279
      if (isLeaf()) {
280
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
281
	ElementData *ld = elementData->getElementData(COARSENABLE);
282
	TEST_EXIT_DBG(ld)("leaf data not coarsenable\n");
283
284
285

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
286
      } else {
287
288
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
289
    }
290

291
    /// Sets Elements \ref mark = mark + 1;
292
293
294
    inline void incrementMark() {
      mark++;
    }
295

296
    /// Sets Elements \ref mark = mark - 1;
297
298
299
    inline void decrementMark() {
      if (0 < mark) 
	mark--;
300
    }
301

302
    /// Sets Element's \ref mark
303
304
    inline void setMark(signed char m) {
      mark = m;
305
    }
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    /** \} */

    // ===== pure virtual methods =================================================

    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
320
      sortFaceIndices(int face, FixVec<int,WORLD> *vec) const = 0;
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

    /** \brief
     * Returns a copy of itself. Needed by Mesh to create Elements by a
     * prototype. 
     */ 
    virtual Element *clone() = 0;

    /** \brief
     * Returns which side of child[childnr] corresponds to side sidenr of 
     * this Element. If the child has no corresponding
     * side, the return value is negative. *isBisected is true after the
     * function call, if the side of the child is only a part of element's 
     * side, false otherwise. 
     */
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

    /** \brief
     * Returns which vertex of elements parent corresponds to the vertexnr of
     * the element, if the element is the childnr-th child of the parent.
     * If the vertex is the ner vertex at the refinement edge, -1 is returned.
     */
    virtual int getVertexOfParent(int childnr, int vertexnr, int elType = 0) const = 0;

344
    /// Returns whether Element is a Line
345
346
    virtual bool isLine() const = 0;

347
    /// Returns whether Element is a Triangle
348
349
    virtual bool isTriangle() const = 0;

350
    /// Returns whether Element is a Tetrahedron
351
352
    virtual bool isTetrahedron() const = 0;

353
    /// Returns whether Element has sideElem as one of its sides.
354
355
356
357
358
359
    virtual bool hasSide(Element *sideElem) const = 0;

    /** \} */

    // ===== other public methods =================================================

360
    /// assignment operator
361
    Element& operator=(const Element& el);
362
363
364
365
366
367
368

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

369
    /// Refines Element's leaf data
370
371
372
373
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) {
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
374
375
376
377
378
	  ElementData *tmp = elementData->getDecorated();
	  DELETE elementData;
	  elementData = tmp;
	}
      }
379
    }
380

381
    /// Coarsens Element's leaf data
382
    inline void coarsenElementData(Element* child1, Element* child2, int elType = 0) {
383
384
      ElementData *childData;
      childData = child1->getElementData();
385
      if (childData) {
386
387
388
389
390
	childData->coarsenElementData(this, child1, child2, elType);
	DELETE childData;
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
391
      if (childData) {
392
393
394
395
	childData->coarsenElementData(this, child2, child1, elType);
	DELETE childData;
	child2->setElementData(NULL);
      }
396
    }
397

398
    /// Returns pointer to \ref elementData
399
400
    inline ElementData* getElementData() const {
      return elementData;
401
    }
402

403
    ///
404
    inline ElementData* getElementData(int typeID) const {
405
      if (elementData) {
406
407
408
	return elementData->getElementData(typeID);
      }
      return NULL;
409
    }
410

411
    /// Deletes the \ref elementData with a specific typeID.
412
    bool deleteElementData(int typeID);
413
414
415
416
417
418
419
420

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
421
			 unsigned char elementTyp = 255);
422

423
    /// Returns whether Element's \ref newCoord is set
424
425
    inline bool isNewCoordSet() const { 
      return (newCoord != NULL);
426
    }
427

428
    /// Frees memory for \ref newCoord
429
    void eraseNewCoord();
430
431
 
    /// Serialize the element to a file.
432
    void serialize(std::ostream &out);
433

434
    /// Deserialize an element from a file.
435
    void deserialize(std::istream &in);
436

437
    ///
438
439
    int calcMemoryUsage();

440
  protected:
441
    /// Sets Element's \ref dof pointer. Used by friend class Mesh.
442
443
    void setDOFPtrs();
  
444
    /// Sets Element's \ref index. Used by friend class Mesh.
445
446
    inline void setIndex(int i) {
      index = i;
447
    }
448

449
    /// Used by friend class Mesh while dofCompress
450
451
    void newDOFFct1(const DOFAdmin*);

452
    /// Used by friend class Mesh while dofCompress
453
454
455
456
457
458
459
    void newDOFFct2(const DOFAdmin*);

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
460
    Element *child[2];
461
462
463
464
465

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
466
467
468
     * ordered the following way: The first N_VERTICES entries correspond to the
     * DOFs at the vertices of the element. The next ones are those at the edges,
     * if present, then those at the faces, if present, and then those at the 
469
470
     * barycenter, if present.
     */
471
    DegreeOfFreedom **dof;
472
473
474
475
476
477

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
478
    int index;
479
480
481
482
483
484

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
485
    signed char mark;
486
487
488
489
490
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
491
492
     * information can be also produced by the traversal routines in the case of 
     * curved boundary.
493
494
495
     */
    WorldVector<double> *newCoord;

496
    /// Pointer to the Mesh this element belongs to
497
    Mesh* mesh;
498

499
    /// Pointer to Element's leaf data
500
    ElementData* elementData;
501

502
503
504
505
506
507
    /** \brief
     * This map is used for deletion of all DOFs of all elements of a mesh. Once
     * a DOF-vector (all DOFS at a node, edge, etc.) is deleted, its address is
     * added to this map to note not to delete it a second time.
     */
    static std::map<DegreeOfFreedom*, bool> deletedDOFs;
508
509
510
511
512
513
514
515

    friend class Mesh;
  };

}

#endif  // AMDIS_ELEMENT_H