ElementObjectDatabase.h 17.6 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
Thomas Witkowski's avatar
Thomas Witkowski committed
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


Thomas Witkowski's avatar
Thomas Witkowski committed
20

21
/** \file ElementObjectDatabase.h */
Thomas Witkowski's avatar
Thomas Witkowski committed
22

23
24
#ifndef AMDIS_ELEMENT_OBJECT_DATABASE_H
#define AMDIS_ELEMENT_OBJECT_DATABASE_H
Thomas Witkowski's avatar
Thomas Witkowski committed
25
26
27
28
29
30

#include <map>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>

31
#include "AMDiS_fwd.h"
32
#include "Containers.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
33
34
#include "Global.h"
#include "Boundary.h"
35
#include "Serializer.h"
36
#include "FiniteElemSpace.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
37
38
39

namespace AMDiS {

40
41
  using namespace std;

42
  /// Just to templatize the typedef.
43
  template<typename T>
44
  struct PerBoundMap {
45
46
47
48
    typedef map<pair<T, T>, BoundaryType> type;
    typedef typename type::iterator iterator;
  };

49
50

  /// Defines one element object. This may be either a vertex, edge or face.
Thomas Witkowski's avatar
Thomas Witkowski committed
51
  struct ElementObjectData {
52
    ElementObjectData(int a = -1, int b = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
53
      : elIndex(a),
54
	ithObject(b)
Thomas Witkowski's avatar
Thomas Witkowski committed
55
    {}
56
57

    /// Index of the element this object is part of.
Thomas Witkowski's avatar
Thomas Witkowski committed
58
59
    int elIndex;
    
60
    /// Index of the object within the element.
Thomas Witkowski's avatar
Thomas Witkowski committed
61
62
    int ithObject;
    
63
    /// Write this element object to disk.
64
    void serialize(ostream &out) const
65
66
67
68
69
    {
      SerUtil::serialize(out, elIndex);
      SerUtil::serialize(out, ithObject);
    }

70
    /// Read this element object from disk.
71
    void deserialize(istream &in)
72
73
74
75
76
    {
      SerUtil::deserialize(in, elIndex);
      SerUtil::deserialize(in, ithObject);
    }

77
    /// Compare this element object with another one.
78
79
    bool operator==(ElementObjectData& cmp) const
    {
80
      return (elIndex == cmp.elIndex && ithObject == cmp.ithObject);
81
82
    }

83
    /// Define a strict order on element objects.
84
85
    bool operator<(const ElementObjectData& rhs) const
    {
86
87
      return (elIndex < rhs.elIndex || 
	      (elIndex == rhs.elIndex && ithObject < rhs.ithObject));
88
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
89
90
91
92
  };



93
94
  /** \brief
   * This class is a database of element objects. An element object is either a
95
96
97
98
99
100
101
   * vertex, edge or the face of a specific element. This database is used to
   * store all objects of all elements of a mesh. The information is stored in a
   * way that makes it possible to identify all elements, which have a given
   * vertex, edge or face in common. If is is known which element is owned by 
   * which rank in parallel computations, it is thus possible to get all interior
   * boundaries on object level. This is required, because two elements may share
   * a common vertex without beging neighbours in the definition of AMDiS.
102
   */
103
  class ElementObjectDatabase {
Thomas Witkowski's avatar
Thomas Witkowski committed
104
  public:
105
    ElementObjectDatabase()
106
107
      : feSpace(NULL),
	mesh(NULL),
108
109
	iterGeoPos(CENTER),
	macroElementRankMap(NULL),
110
111
112
113
114
	levelData(NULL),
	removePeriodicBoundary(false)
    {
      Parameters::get("parallel->remove periodic boundary", removePeriodicBoundary);
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
115

116
    void setFeSpace(const FiniteElemSpace *fe)
Thomas Witkowski's avatar
Thomas Witkowski committed
117
    {
118
119
120
121
122
123
124
      feSpace = fe;
      mesh = feSpace->getMesh();
    }
  
    Mesh* getMesh()
    {
      return mesh;
125
126
    }

127
128
129
130
131
132
    /*
     * \param[in]  macroElementRankMap   Maps to each macro element of the mesh
     *                                   the rank that owns this macro element.
     */
    void create(map<int, int>& macroElementRankMap,
		MeshLevelData& levelData);
133

134
    void createMacroElementInfo(vector<MacroElement*> &mel);
135
136

    /** \brief
137
138
139
     * Create for a filled object database the membership information for all
     * element objects. An object is owned by a rank, if the rank has the
     * heighest rank number of all ranks where the object is part of.
140
     */
141
    void updateRankData();
142

143
    /** \brief
144
145
146
     * Iterates over all elements for one geometrical index, i.e., over all
     * vertices, edges or faces in the mesh. The function returns true, if the
     * result is valid. Otherwise the iterator is at the end position.
147
     *
148
149
     * \param[in]  pos   Must be either VERTEX, EDGE or FACE and defines the
     *                   elements that should be traversed.
150
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
151
152
    bool iterate(GeoIndex pos)
    {
153
154
155
      // CENTER marks the variable "iterGeoPos" to be in an undefined state. I.e.,
      // there is no iteration that is actually running.

Thomas Witkowski's avatar
Thomas Witkowski committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      if (iterGeoPos == CENTER) {
	iterGeoPos = pos;
	switch (iterGeoPos) {
	case VERTEX:
	  vertexIter = vertexInRank.begin();
	  break;
	case EDGE:
	  edgeIter = edgeInRank.begin();
	  break;
	case FACE:
	  faceIter = faceInRank.begin();
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      } else {
	switch (iterGeoPos) {
	case VERTEX:
	  ++vertexIter;
	  break;
	case EDGE:
	  ++edgeIter;
	  break;
	case FACE:
	  ++faceIter;
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      }

      switch (iterGeoPos) {
      case VERTEX:
	if (vertexIter == vertexInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case EDGE:
	if (edgeIter == edgeInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case FACE:
	if (faceIter == faceInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      default:
	ERROR_EXIT("Should not happen!\n");	
      }

      return true;
    }


214
    /// Returns the data of the current iterator position.
215
    map<int, ElementObjectData>& getIterateData()
Thomas Witkowski's avatar
Thomas Witkowski committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexIter->second;
	break;
      case EDGE:
	return edgeIter->second;
	break;
      case FACE:
	return faceIter->second;
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return faceIter->second;
      }
    }

235
    /// Returns the rank owner of the current iterator position.
236
    int getIterateOwner(int level);
Thomas Witkowski's avatar
Thomas Witkowski committed
237

238
    /// Returns the rank owner of the current iterator position.
239
    int getIterateMaxLevel();
240

241
    /// Checks if a given vertex DOF is in a given rank.
242
243
244
245
246
    int isInRank(DegreeOfFreedom vertex, int rank)
    {
      return (vertexInRank[vertex].count(rank));
    }

247
    /// Checks if a given edge is in a given rank.
248
249
250
251
252
    int isInRank(DofEdge edge, int rank)
    {
      return (edgeInRank[edge].count(rank));
    }

253
    /// Checks if a given face is in a given rank.
254
255
256
257
258
259
    int isInRank(DofFace face, int rank)
    {
      return (faceInRank[face].count(rank));
    }


260
261
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
262
    vector<ElementObjectData>& getElements(DegreeOfFreedom vertex)
Thomas Witkowski's avatar
Thomas Witkowski committed
263
264
265
266
    {
      return vertexElements[vertex];
    }

267
    /// Returns a vector with all macro elements that have a given edge in common.
268
    vector<ElementObjectData>& getElements(DofEdge edge)
Thomas Witkowski's avatar
Thomas Witkowski committed
269
270
271
272
    {
      return edgeElements[edge];
    }

273
    /// Returns a vector with all macro elements that have a given face in common.
274
    vector<ElementObjectData>& getElements(DofFace face)
Thomas Witkowski's avatar
Thomas Witkowski committed
275
276
277
278
    {
      return faceElements[face];
    }

279

280
281
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    vector<ElementObjectData>& getElementsVertex(int elIndex, int ithVertex)
    {
      ElementObjectData elObj(elIndex, ithVertex);
      DegreeOfFreedom vertex = vertexLocalMap[elObj];
      return vertexElements[vertex];
    }
    
    /// Returns a vector with all macro elements that have a given edge in common.
    vector<ElementObjectData>& getElementsEdge(int elIndex, int ithEdge)
    {
      ElementObjectData elObj(elIndex, ithEdge);
      DofEdge edge = edgeLocalMap[elObj];
      return edgeElements[edge];
    }

    /// Returns a vector with all macro elements that have a given face in common.
    vector<ElementObjectData>& getElementsFace(int elIndex, int ithFace)
    {
      ElementObjectData elObj(elIndex, ithFace);
      DofFace face = faceLocalMap[elObj];
      return faceElements[face];
    }


306
307
308
    
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given vertex DOF in common.
309
    map<int, ElementObjectData>& getElementsInRank(DegreeOfFreedom vertex)
310
311
312
313
    {
      return vertexInRank[vertex];
    }

314
315
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given edge in common.
316
    map<int, ElementObjectData>& getElementsInRank(DofEdge edge)
317
318
319
320
    {
      return edgeInRank[edge];
    }

321
322
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given face in common.
323
    map<int, ElementObjectData>& getElementsInRank(DofFace face)
324
325
326
327
    {
      return faceInRank[face];
    }

328
    /// Returns to an element object data the appropriate vertex DOF.
329
330
    DegreeOfFreedom getVertexLocalMap(ElementObjectData &data)
    {
331
332
      TEST_EXIT_DBG(vertexLocalMap.count(data))("Should not happen!\n");

333
334
335
      return vertexLocalMap[data];
    }

336
    /// Returns to an element object data the appropriate edge.
337
338
    DofEdge getEdgeLocalMap(ElementObjectData &data)
    {
339
340
      TEST_EXIT_DBG(edgeLocalMap.count(data))("Should not happen!\n");

341
342
343
      return edgeLocalMap[data];
    }

344
    /// Returns to an element object data the appropriate face.
345
346
    DofFace getFaceLocalMap(ElementObjectData &data)
    {
347
348
      TEST_EXIT_DBG(faceLocalMap.count(data))("Should not happen!\n");

349
350
351
      return faceLocalMap[data];
    }

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    PerBoundMap<DegreeOfFreedom>::type& getPeriodicVertices()
    {
      return periodicVertices;
    }

    PerBoundMap<DofEdge>::type& getPeriodicEdges()
    {
      return periodicEdges;
    }

    PerBoundMap<DofFace>::type& getPeriodicFaces()
    {
      return periodicFaces;
    }

367
368
    inline bool getEdgeReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
369
    {
370
371
372
      if (mesh->getDim() == 2)
	return true;

373
374
375
376
377
378
      TEST_EXIT_DBG(edgeReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return edgeReverseMode[make_pair(obj0, obj1)];
    }

379
380
    inline bool getFaceReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
381
382
383
384
385
386
387
    {
      TEST_EXIT_DBG(faceReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return faceReverseMode[make_pair(obj0, obj1)];
    }

388
389
390
391
392
393
    /// Returns true if there is periodic data.
    bool hasPeriodicData()
    {
      return (periodicVertices.size() != 0);
    }

394
395
396
397
398
399
400
401
    /// Returns true if the given boundary type is larger or equal to the smallest
    /// periodic boundary ID in mesh. See \ref smallestPeriodicBcType for more
    /// information.
    bool isValidPeriodicType(BoundaryType t) const
    {
      return (t >= smallestPeriodicBcType);
    }

402
403
404
405
406
407
408
409
410
411
    inline Element* getElementPtr(int index)
    {
      return macroElIndexMap[index];
    }

    inline int getElementType(int index)
    {
      return macroElIndexTypeMap[index];
    }

412
    /// Write the element database to disk.
413
    void serialize(ostream &out);
414
415
    
    /// Read the element database from disk.
416
    void deserialize(istream &in);
417

418
  protected:
419
420
421
422
423
424
425
426
427
    /** \brief
     * Adds an element to the object database. If the element is part of a
     * periodic boundary, all information about subobjects of the element on
     * this boundary are collected.
     *
     * \param[in]  elInfo    ElInfo object of the element. 
     */
    void addElement(ElInfo *elInfo);

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    /// Adds the i-th DOF vertex of an element to the object database.
    void addVertex(Element *el, int ith)
    {
      DegreeOfFreedom vertex = el->getDof(ith, 0);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      vertexElements[vertex].push_back(elObj);
      vertexLocalMap[elObj] = vertex;
    }

    /// Adds the i-th edge of an element to the object database.
    void addEdge(Element *el, int ith)
    {
      DofEdge edge = el->getEdge(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      edgeElements[edge].push_back(elObj);
      edgeLocalMap[elObj] = edge;
    }

    /// Adds the i-th face of an element to the object database.
    void addFace(Element *el, int ith)
    {
      DofFace face = el->getFace(ith);
      int elIndex = el->getIndex();
      ElementObjectData elObj(elIndex, ith);

      faceElements[face].push_back(elObj);
      faceLocalMap[elObj] = face;
    }

461
462
463
464
465
466
467
468
469
470
471
    /** \brief
     * Creates final data of the periodic boundaries. Must be called after all
     * elements of the mesh are added to the object database. Then this functions
     * search for indirectly connected vertices in periodic boundaries. This is
     * only the case, if there are more than one boundary conditions. Then, e.g., 
     * in 2D, all edges of a square are iterectly connected. In 3D, if the macro 
     * mesh is a box, all eight vertex nodes and always four of the 12 edges are 
     * indirectly connected.
     */
    void createPeriodicData();

472

473
474
475
476
477
478
    /// Creates on all boundaries the reverse mode flag.
    void createReverseModeData();

    BoundaryType getNewBoundaryType();

    BoundaryType provideConnectedPeriodicBoundary(BoundaryType b0, 
479
						  BoundaryType b1);
480
481

    /// Some auxiliary function to write the element object database to disk.
482
    void serialize(ostream &out, vector<ElementObjectData>& elVec);
483

484
    /// Some auxiliary function to read the element object database from disk.
485
    void deserialize(istream &in, vector<ElementObjectData>& elVec);
486

487
    /// Some auxiliary function to write the element object database to disk.
488
    void serialize(ostream &out, map<int, ElementObjectData>& data);
489

490
    /// Some auxiliary function to read the element object database from disk.
491
    void deserialize(istream &in, map<int, ElementObjectData>& data);
492

Thomas Witkowski's avatar
Thomas Witkowski committed
493
  private:
494
495
    const FiniteElemSpace* feSpace;

496
497
    /// The mesh that is used to store all its element information in 
    /// the database.
498
    Mesh *mesh;
499
    
500
    /// Maps to each vertex DOF all element objects that represent this vertex.
501
    map<DegreeOfFreedom, vector<ElementObjectData> > vertexElements;
502
503

    /// Maps to each edge all element objects that represent this edge.
504
    map<DofEdge, vector<ElementObjectData> > edgeElements;
Thomas Witkowski's avatar
Thomas Witkowski committed
505

506
507
    /// Maps to each face all element objects that represent this edge.
    map<DofFace, vector<ElementObjectData> > faceElements;
508

509
510
    
    /// Maps to an element object the corresponding vertex DOF.
511
    map<ElementObjectData, DegreeOfFreedom> vertexLocalMap;
512
513

    /// Maps to an element object the corresponding edge.
514
    map<ElementObjectData, DofEdge> edgeLocalMap;
515
516

    /// Maps to an element object the corresponding face.
517
    map<ElementObjectData, DofFace> faceLocalMap;
518

519
   
520
521
    /// Defines to each vertex DOF a map that maps to each rank number the element
    /// objects that have this vertex DOF in common.
522
    map<DegreeOfFreedom, map<int, ElementObjectData> > vertexInRank;
523

524
525
    /// Defines to each edge a map that maps to each rank number the element 
    /// objects that have this edge in common.
526
    map<DofEdge, map<int, ElementObjectData> > edgeInRank;
527

528
529
    /// Defines to each face a map that maps to each rank number the element 
    /// objects that have this face in common.
530
    map<DofFace, map<int, ElementObjectData> > faceInRank;
Thomas Witkowski's avatar
Thomas Witkowski committed
531

532
533

    /// Vertex iterator to iterate over \ref vertexInRank
534
    map<DegreeOfFreedom, map<int, ElementObjectData> >::iterator vertexIter;
535
536

    /// Edge iterator to iterate over \ref edgeInRank
537
    map<DofEdge, map<int, ElementObjectData> >::iterator edgeIter;
538
539

    /// Face iterator to iterate over \ref faceInRank
540
    map<DofFace, map<int, ElementObjectData> >::iterator faceIter;
Thomas Witkowski's avatar
Thomas Witkowski committed
541

542
543
544
545
546

    /// Defines the geometrical iteration index of the iterators. I.e., the value
    /// is either VERTEX, EDGE or FACE and the corresponding element objects are
    /// traversed. The value CENTER is used to define a not defined states of the
    /// iterators, i.e., if no iteration is running.
Thomas Witkowski's avatar
Thomas Witkowski committed
547
    GeoIndex iterGeoPos;
548

549
    map<pair<BoundaryType, BoundaryType>, BoundaryType> bConnMap;
550

551
    /// The following three data structures store periodic DOFs, edges and faces.
552
553
554
    PerBoundMap<DegreeOfFreedom>::type periodicVertices;
    PerBoundMap<DofEdge>::type periodicEdges;
    PerBoundMap<DofFace>::type periodicFaces;
555

556
557
558
559
560
561
562
    /// Defines the smallest boudary ID for periodic boundary conditions. This is
    /// required to distinguish between "real" periodic boundaries and periodic
    /// boundary IDs that are set by the parallel algorithm for indirectly 
    /// connected boundaries.
    BoundaryType smallestPeriodicBcType;

    /// Stores to each vertex all its periodic associations.
563
    map<DegreeOfFreedom, std::set<BoundaryType> > periodicDofAssoc;
564

565
    /// Stores to each edge all its periodic associations.
566
567
568
569
570
    map<DofEdge, std::set<DofEdge> > periodicEdgeAssoc;

    map<pair<ElementObjectData, ElementObjectData>, bool> edgeReverseMode;

    map<pair<ElementObjectData, ElementObjectData>, bool> faceReverseMode;
571

572
573
    map<int, int> *macroElementRankMap;

574
575
576
577
578
    /// Maps to each macro element index a pointer to the corresponding element.
    map<int, Element*> macroElIndexMap;
    
    /// Maps to each macro element index the type of this element.
    map<int, int> macroElIndexTypeMap;
579
580

    MeshLevelData* levelData;
581
582
583
584
585
586

    /// If this variable is set to true, the mesh distributor removes all 
    /// periodic boundary conditions. The element neighbourhood relation is
    /// not changed. Thus, when using some domain decomposition method, this is
    /// a natural way to deal with periodic boundary conditions.
    bool removePeriodicBoundary;
Thomas Witkowski's avatar
Thomas Witkowski committed
587
588
589
590
591
  };

}

#endif