PetscSolverFeti.cc 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


#include "parallel/PetscSolverFeti.h"
#include "parallel/StdMpi.h"
#include "parallel/MpiHelper.h"

namespace AMDiS {

  using namespace std;


#ifdef HAVE_PETSC_DEV 
23
  void PetscSolverFeti::updateDofData()
24
25
  {
    FUNCNAME("PetscSolverFeti::updateDofData()");
26
27
28
29
30
31

    TEST_EXIT(meshDistributor->getMesh()->getDim() == 2)
      ("Works for 2D problems only!");

    TEST_EXIT(meshDistributor->getFeSpace()->getBasisFcts()->getDegree() == 1)
      ("Works for linear basis functions only!\n");
32
   
33
34
35
36
37
38
39
    createPrimals();

    createDuals();

    createLagrange();

    createIndexB();
40
41
42
  }


43
  void PetscSolverFeti::createPrimals()
44
  {
45
    FUNCNAME("PetscSolverFeti::createPrimals()");  
46

47
48
49
50
51
52
53
    primals.clear();
    DofContainerSet& vertices = 
      meshDistributor->getBoundaryDofInfo().geoDofs[VERTEX];
    TEST_EXIT_DBG(vertices.size())("No primal vertices on this rank!\n");
    for (DofContainerSet::iterator it = vertices.begin(); 
	 it != vertices.end(); ++it)
      primals.insert(**it);
54
55

    globalPrimalIndex.clear();
56
57
58
59
    nRankPrimals = 0;
    for (DofIndexSet::iterator it = primals.begin(); it != primals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it)) {
	globalPrimalIndex[*it] = nRankPrimals;
60
61
62
	nRankPrimals++;
      }

63
64
65

    nOverallPrimals = 0;
    int rStartPrimals = 0;
66
67
68
69
70
71
72
73
74
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankPrimals, rStartPrimals, nOverallPrimals);

    for (DofMapping::iterator it = globalPrimalIndex.begin();
	 it != globalPrimalIndex.end(); ++it)
      it->second += rStartPrimals;

    MSG_DBG("nRankPrimals = %d   nOverallPrimals = %d\n",
	    nRankPrimals, nOverallPrimals);
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (globalPrimalIndex.count(**dofIt))
	  stdMpi.getSendData(it->first).push_back(globalPrimalIndex[**dofIt]);
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank) 
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false)
	  globalPrimalIndex[**dofIt] = stdMpi.getRecvData(it->first)[i++];
      }
    }

    TEST_EXIT_DBG(primals.size() == globalPrimalIndex.size())
      ("Number of primals %d, but number of global primals on this rank is %d!\n",
       primals.size(), globalPrimalIndex.size());


    TEST_EXIT_DBG(nOverallPrimals > 0)
      ("There are zero primal nodes in domain!\n");
  }


  void PetscSolverFeti::createDuals()
  {
    FUNCNAME("PetscSolverFeti::createDuals()");
    
    // === Create for each dual node the set of ranks that contain this ===
    // === node (denoted by W(x_j)).                                    ===

    boundaryDofRanks.clear();

    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it) {
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	// If DOF is not primal, i.e., its a dual node
	if (primals.count(**dofIt) == 0) {
	  boundaryDofRanks[**dofIt].insert(mpiRank);
	  boundaryDofRanks[**dofIt].insert(it->first);
	}
      }
    }

    StdMpi<vector<std::set<int> > > stdMpi(meshDistributor->getMpiComm());
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0)
	  stdMpi.getSendData(it->first).push_back(boundaryDofRanks[**dofIt]);

    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank)
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)	
	if (primals.count(**dofIt) == 0)
	  boundaryDofRanks[**dofIt] = stdMpi.getRecvData(it->first)[i++];	      
    }


    // === Create global index of the dual nodes on each rank. ===

    duals.clear();
    globalDualIndex.clear();

    int nRankAllDofs = meshDistributor->getFeSpace()->getAdmin()->getUsedDofs();
    nRankB = nRankAllDofs - primals.size();
    nOverallB = 0;
    rStartB = 0;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankB, rStartB, nOverallB);
    DofContainer allBoundaryDofs;
    meshDistributor->getAllBoundaryDofs(allBoundaryDofs);
    int nRankInteriorDofs = nRankAllDofs - allBoundaryDofs.size();

    int nRankDuals = 0;
    for (DofContainer::iterator it = allBoundaryDofs.begin();
	 it != allBoundaryDofs.end(); ++it) {
      if (primals.count(**it) == 0) {
	duals.insert(**it);
	globalDualIndex[**it] = rStartB + nRankInteriorDofs + nRankDuals;
	nRankDuals++;
      }
    }

    int nOverallDuals = nRankDuals;
    mpi::globalAdd(nOverallDuals);

    MSG_DBG("nRankDuals = %d   nOverallDuals = %d\n",
	    nRankDuals, nOverallDuals);
  }

  
  void PetscSolverFeti::createLagrange()
  {
    FUNCNAME("PetscSolverFeti::createLagrange()");

    nRankLagrange = 0;
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      if (meshDistributor->getIsRankDof(*it)) {
	dofFirstLagrange[*it] = nRankLagrange;
	int degree = boundaryDofRanks[*it].size();
	nRankLagrange += (degree * (degree - 1)) / 2;
      }
    }

    nOverallLagrange = 0;
    int rStartLagrange = 0;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankLagrange, rStartLagrange, nOverallLagrange);

    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it))
	dofFirstLagrange[*it] += rStartLagrange;

    MSG_DBG("nRankLagrange = %d  nOverallLagrange = %d\n",
	    nRankLagrange, nOverallLagrange);


    // === ===

    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) == 0) {
	  TEST_EXIT_DBG(dofFirstLagrange.count(**dofIt))("Should not happen!\n");
	  stdMpi.getSendData(it->first).push_back(dofFirstLagrange[**dofIt]);
	}
      }
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvData = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvData = true;
	  break;
	}
	  
      if (recvData)
	stdMpi.recv(it->first);
    }

    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int counter = 0;
      for (unsigned int i = 0; i < it->second.size(); i++)
	if (primals.count(*(it->second[i])) == 0)
	  dofFirstLagrange[*(it->second[i])] = stdMpi.getRecvData(it->first)[counter++];
    }
     
  }


  void PetscSolverFeti::createIndexB()
  {
    FUNCNAME("PetscSolverFeti::createIndeB()");

    globalIndexB.clear();
    DOFAdmin* admin = meshDistributor->getFeSpace()->getAdmin();
    
    for (int i = 0; i < admin->getUsedSize(); i++)
      if (admin->isDofFree(i) == false && primals.count(i) == 0)
	if (duals.count(i) == 0 && primals.count(i) == 0)
	  globalIndexB[i] = -1;

    int nInterior = 0;
    for (DofMapping::iterator it = globalIndexB.begin(); 
	 it != globalIndexB.end(); ++it) {
      it->second = nInterior + rStartB;
      nInterior++;
    }

    TEST_EXIT_DBG(nInterior + primals.size() + duals.size() == 
		  static_cast<unsigned int>(admin->getUsedDofs()))
      ("Should not happen!\n");

    for (DofIndexSet::iterator it = duals.begin();
	 it != duals.end(); ++it)
      globalIndexB[*it] = globalDualIndex[*it];
310
311
312
  }


313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  void PetscSolverFeti::createMatLagrange(int nComponents)
  {
    FUNCNAME("PetscSolverFeti::createMatLagrange()");

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
		    nRankLagrange * nComponents, nRankB * nComponents,
		    nOverallLagrange * nComponents, nOverallB * nComponents,
		    2, PETSC_NULL, 2, PETSC_NULL,
		    &mat_lagrange);

    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      TEST_EXIT_DBG(dofFirstLagrange.count(*it))("Should not happen!\n");
      TEST_EXIT_DBG(boundaryDofRanks.count(*it))("Should not happen!\n");

      int index = dofFirstLagrange[*it];
      vector<int> W(boundaryDofRanks[*it].begin(), boundaryDofRanks[*it].end());
      int degree = W.size();

      TEST_EXIT_DBG(globalDualIndex.count(*it))("Should not happen!\n");
      int dualCol = globalDualIndex[*it];

      for (int i = 0; i < degree; i++) {
	for (int j = i + 1; j < degree; j++) {
	  if (W[i] == mpiRank || W[j] == mpiRank) {	      
	    for (int k = 0; k < nComponents; k++) {
	      int rowIndex = index * nComponents + k;
	      int colIndex = dualCol * nComponents + k;
	      double value = (W[i] == mpiRank ? 1.0 : -1.0);
	      MatSetValue(mat_lagrange, rowIndex, colIndex, value, 
			  INSERT_VALUES);
	    }
	  }

	  index++;
	}
      }
    }

    MatAssemblyBegin(mat_lagrange, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_lagrange, MAT_FINAL_ASSEMBLY);
  }


  void PetscSolverFeti::fillPetscMatrix(Matrix<DOFMatrix*> *mat, 
					SystemVector *vec)
358
359
  {
    FUNCNAME("PetscSolverFeti::fillPetscMatrix()");   
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

    updateDofData();

    int nComponents = vec->getSize();

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
		    nRankB * nComponents, nRankB * nComponents,
		    nOverallB * nComponents, nOverallB * nComponents,
		    100, PETSC_NULL, 100, PETSC_NULL, 
		    &mat_b_b);

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
		    nRankPrimals * nComponents, nRankPrimals * nComponents,
		    nOverallPrimals * nComponents, nOverallPrimals * nComponents,
		    10, PETSC_NULL, 10, PETSC_NULL, 
		    &mat_primal_primal);

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
		    nRankB * nComponents, nRankPrimals * nComponents,
		    nOverallB * nComponents, nOverallPrimals * nComponents,
		    100, PETSC_NULL, 100, PETSC_NULL, 
		    &mat_b_primal);

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
		    nRankPrimals * nComponents, nRankB * nComponents,
		    nOverallPrimals * nComponents, nOverallB * nComponents,
		    100, PETSC_NULL, 100, PETSC_NULL, 
		    &mat_primal_b);

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    vector<int> cols, colsOther;
    vector<double> values, valuesOther;
    cols.reserve(300);
    colsOther.reserve(300);
    values.reserve(300);
    valuesOther.reserve(300);

    for (int i = 0; i < nComponents; i++)
      for (int j = 0; j < nComponents; j++)
	if ((*mat)[i][j]) {
	  traits::col<Matrix>::type col((*mat)[i][j]->getBaseMatrix());
	  traits::const_value<Matrix>::type value((*mat)[i][j]->getBaseMatrix());

	  for (cursor_type cursor = begin<row>((*mat)[i][j]->getBaseMatrix()), 
		 cend = end<row>((*mat)[i][j]->getBaseMatrix()); cursor != cend; ++cursor) {
	    bool rowPrimal = primals.count(*cursor) != 0;

	    cols.clear();
	    values.clear();

	    colsOther.clear();
	    valuesOther.clear();

	    for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
		 icursor != icend; ++icursor) {
	      if (primals.count(col(*icursor)) != 0) {
		TEST_EXIT_DBG(globalPrimalIndex.count(col(*icursor)))
		  ("No global primal index for DOF %d!\n", col(*icursor));

		int colIndex = globalPrimalIndex[col(*icursor)] * nComponents + j;

		if (rowPrimal) {
		  cols.push_back(colIndex);
		  values.push_back(value(*icursor));
		} else {
		  colsOther.push_back(colIndex);
		  valuesOther.push_back(value(*icursor));
		}
	      } else {
		TEST_EXIT_DBG(globalIndexB.count(col(*icursor)))
		  ("No global B index for DOF %d!\n", col(*icursor));
	      
		int colIndex = globalIndexB[col(*icursor)] * nComponents + j;

		if (rowPrimal) {
		  colsOther.push_back(colIndex);
		  valuesOther.push_back(value(*icursor));
		} else {
		  cols.push_back(colIndex);
		  values.push_back(value(*icursor));
		}
	      }
	    }

	    if (rowPrimal) {
	      TEST_EXIT_DBG(globalPrimalIndex.count(*cursor))
		("Should not happen!\n");

 	      int rowIndex = globalPrimalIndex[*cursor] * nComponents + i;
 	      MatSetValues(mat_primal_primal, 1, &rowIndex, cols.size(),
 			   &(cols[0]), &(values[0]), ADD_VALUES);

   	      if (colsOther.size())
  		MatSetValues(mat_primal_b, 1, &rowIndex, colsOther.size(),
  			     &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	    } else {
	      TEST_EXIT_DBG(globalIndexB.count(*cursor))
		("Should not happen!\n");

	      int rowIndex = globalIndexB[*cursor] * nComponents + i;
	      MatSetValues(mat_b_b, 1, &rowIndex, cols.size(),
			   &(cols[0]), &(values[0]), ADD_VALUES);

 	      if (colsOther.size())
 		MatSetValues(mat_b_primal, 1, &rowIndex, colsOther.size(),
 			     &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	    }
	  } 
	}


    MatAssemblyBegin(mat_b_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_b, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_b_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_b, MAT_FINAL_ASSEMBLY);
	  

    // === ===

    VecCreate(PETSC_COMM_WORLD, &vec_b);
    VecSetSizes(vec_b, nRankB * nComponents, nOverallB * nComponents);
    VecSetType(vec_b, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &vec_primal);
    VecSetSizes(vec_primal, nRankPrimals * nComponents, 
		nOverallPrimals * nComponents);
    VecSetType(vec_primal, VECMPI);
    
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>::Iterator dofIt(vec->getDOFVector(i), USED_DOFS);
      for (dofIt.reset(); !dofIt.end(); ++dofIt) {
	int index = dofIt.getDOFIndex();
	if (primals.count(index)) {
	  TEST_EXIT_DBG(globalPrimalIndex.count(index))
	    ("Should not happen!\n");

	  index = globalPrimalIndex[index] * nComponents + i;
	  double value = *dofIt;
	  VecSetValues(vec_primal, 1, &index, &value, ADD_VALUES);
	} else {
	  TEST_EXIT_DBG(globalIndexB.count(index))
	    ("Should not happen!\n");

	  index = globalIndexB[index] * nComponents + i;
	  double value = *dofIt;
	  VecSetValues(vec_b, 1, &index, &value, ADD_VALUES);
	}      
      }
    }

    VecAssemblyBegin(vec_b);
    VecAssemblyEnd(vec_b);

    VecAssemblyBegin(vec_primal);
    VecAssemblyEnd(vec_primal);


    createMatLagrange(nComponents);

    MSG("FINISHED!\n");
    exit(0);
534
535
536
537
538
539
  }


  void PetscSolverFeti::solvePetscMatrix(SystemVector &vec, AdaptInfo *adaptInfo)
  {
    FUNCNAME("PetscSolverFeti::solvePetscMatrix()");
540
541
542
543
544
545
546
547
548

    MatDestroy(mat_b_b);
    MatDestroy(mat_primal_primal);
    MatDestroy(mat_b_primal);
    MatDestroy(mat_primal_b);
    MatDestroy(mat_lagrange);

    VecDestroy(vec_b);
    VecDestroy(vec_primal);
549
550
551
552
  }
#endif

}