ElementObjectDatabase.h 17 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
Thomas Witkowski's avatar
Thomas Witkowski committed
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


Thomas Witkowski's avatar
Thomas Witkowski committed
20

21
/** \file ElementObjectDatabase.h */
Thomas Witkowski's avatar
Thomas Witkowski committed
22

23
24
#ifndef AMDIS_ELEMENT_OBJECT_DATABASE_H
#define AMDIS_ELEMENT_OBJECT_DATABASE_H
Thomas Witkowski's avatar
Thomas Witkowski committed
25
26
27
28
29
30

#include <map>
#include <vector>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>

31
#include "AMDiS_fwd.h"
32
#include "Containers.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
33
34
#include "Global.h"
#include "Boundary.h"
35
#include "Serializer.h"
36
#include "FiniteElemSpace.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
37
38
39

namespace AMDiS {

40
41
  using namespace std;

42
  /// Just to templatize the typedef.
43
  template<typename T>
44
  struct PerBoundMap {
45
46
47
48
    typedef map<pair<T, T>, BoundaryType> type;
    typedef typename type::iterator iterator;
  };

49
50

  /// Defines one element object. This may be either a vertex, edge or face.
Thomas Witkowski's avatar
Thomas Witkowski committed
51
  struct ElementObjectData {
52
    ElementObjectData(int a = -1, int b = 0)
Thomas Witkowski's avatar
Thomas Witkowski committed
53
      : elIndex(a),
54
	ithObject(b)
Thomas Witkowski's avatar
Thomas Witkowski committed
55
    {}
56
57

    /// Index of the element this object is part of.
Thomas Witkowski's avatar
Thomas Witkowski committed
58
59
    int elIndex;
    
60
    /// Index of the object within the element.
Thomas Witkowski's avatar
Thomas Witkowski committed
61
    int ithObject;
Thomas Witkowski's avatar
Thomas Witkowski committed
62

63
    /// Write this element object to disk.
64
    void serialize(ostream &out) const
65
66
67
68
69
    {
      SerUtil::serialize(out, elIndex);
      SerUtil::serialize(out, ithObject);
    }

70
    /// Read this element object from disk.
71
    void deserialize(istream &in)
72
73
74
75
76
    {
      SerUtil::deserialize(in, elIndex);
      SerUtil::deserialize(in, ithObject);
    }

77
    /// Compare this element object with another one.
78
79
    bool operator==(ElementObjectData& cmp) const
    {
80
      return (elIndex == cmp.elIndex && ithObject == cmp.ithObject);
81
82
    }

83
    /// Define a strict order on element objects.
84
85
    bool operator<(const ElementObjectData& rhs) const
    {
86
87
      return (elIndex < rhs.elIndex || 
	      (elIndex == rhs.elIndex && ithObject < rhs.ithObject));
88
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
89
90
91
92
  };



93
94
  /** \brief
   * This class is a database of element objects. An element object is either a
95
96
97
98
99
100
101
   * vertex, edge or the face of a specific element. This database is used to
   * store all objects of all elements of a mesh. The information is stored in a
   * way that makes it possible to identify all elements, which have a given
   * vertex, edge or face in common. If is is known which element is owned by 
   * which rank in parallel computations, it is thus possible to get all interior
   * boundaries on object level. This is required, because two elements may share
   * a common vertex without beging neighbours in the definition of AMDiS.
102
   */
103
  class ElementObjectDatabase {
Thomas Witkowski's avatar
Thomas Witkowski committed
104
  public:
105
    ElementObjectDatabase()
106
107
      : feSpace(NULL),
	mesh(NULL),
108
109
	iterGeoPos(CENTER),
	macroElementRankMap(NULL),
110
111
	levelData(NULL)
    {}
Thomas Witkowski's avatar
Thomas Witkowski committed
112

113
    void setFeSpace(const FiniteElemSpace *fe)
Thomas Witkowski's avatar
Thomas Witkowski committed
114
    {
115
116
117
118
119
120
121
      feSpace = fe;
      mesh = feSpace->getMesh();
    }
  
    Mesh* getMesh()
    {
      return mesh;
122
123
    }

124
125
126
127
128
129
    /*
     * \param[in]  macroElementRankMap   Maps to each macro element of the mesh
     *                                   the rank that owns this macro element.
     */
    void create(map<int, int>& macroElementRankMap,
		MeshLevelData& levelData);
130

131
    void createMacroElementInfo(vector<MacroElement*> &mel);
132
133

    /** \brief
134
135
136
     * Create for a filled object database the membership information for all
     * element objects. An object is owned by a rank, if the rank has the
     * heighest rank number of all ranks where the object is part of.
137
     */
138
    void updateRankData();
139

140
    /** \brief
141
142
143
     * Iterates over all elements for one geometrical index, i.e., over all
     * vertices, edges or faces in the mesh. The function returns true, if the
     * result is valid. Otherwise the iterator is at the end position.
144
     *
145
146
     * \param[in]  pos   Must be either VERTEX, EDGE or FACE and defines the
     *                   elements that should be traversed.
147
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
148
149
    bool iterate(GeoIndex pos)
    {
150
151
152
      // CENTER marks the variable "iterGeoPos" to be in an undefined state. I.e.,
      // there is no iteration that is actually running.

Thomas Witkowski's avatar
Thomas Witkowski committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
      if (iterGeoPos == CENTER) {
	iterGeoPos = pos;
	switch (iterGeoPos) {
	case VERTEX:
	  vertexIter = vertexInRank.begin();
	  break;
	case EDGE:
	  edgeIter = edgeInRank.begin();
	  break;
	case FACE:
	  faceIter = faceInRank.begin();
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      } else {
	switch (iterGeoPos) {
	case VERTEX:
	  ++vertexIter;
	  break;
	case EDGE:
	  ++edgeIter;
	  break;
	case FACE:
	  ++faceIter;
	  break;
	default:
	  ERROR_EXIT("Not GeoIndex %d!\n", iterGeoPos);
	}
      }

      switch (iterGeoPos) {
      case VERTEX:
	if (vertexIter == vertexInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case EDGE:
	if (edgeIter == edgeInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      case FACE:
	if (faceIter == faceInRank.end()) {
	  iterGeoPos = CENTER;
	  return false;
	}
	break;
      default:
	ERROR_EXIT("Should not happen!\n");	
      }

      return true;
    }


211
    /// Returns the data of the current iterator position.
212
    map<int, ElementObjectData>& getIterateData()
Thomas Witkowski's avatar
Thomas Witkowski committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    {
      switch (iterGeoPos) {
      case VERTEX:
	return vertexIter->second;
	break;
      case EDGE:
	return edgeIter->second;
	break;
      case FACE:
	return faceIter->second;
	break;
      default:
	ERROR_EXIT("Should not happen!\n");

	// Will never be reached, just to avoid compiler warnings.
	return faceIter->second;
      }
    }

232
    /// Returns the rank owner of the current iterator position.
233
    int getIterateOwner(int level);
Thomas Witkowski's avatar
Thomas Witkowski committed
234

235
236
237
238
239
240
241
242
243
    /// Returns the owner of a macro element vertex.
    int getOwner(DegreeOfFreedom vertex, int level);

    /// Returns the owner of a macro element edge.
    int getOwner(DofEdge edge, int level);
	
    /// Returns the owner of a macro element face.
    int getOwner(DofFace face, int level);

244
    /// Returns the rank owner of the current iterator position.
245
    int getIterateMaxLevel();
246

247
    /// Checks if a given vertex DOF is in a given rank.
248
249
250
251
252
    int isInRank(DegreeOfFreedom vertex, int rank)
    {
      return (vertexInRank[vertex].count(rank));
    }

253
    /// Checks if a given edge is in a given rank.
254
255
256
257
258
    int isInRank(DofEdge edge, int rank)
    {
      return (edgeInRank[edge].count(rank));
    }

259
    /// Checks if a given face is in a given rank.
260
261
262
263
264
265
    int isInRank(DofFace face, int rank)
    {
      return (faceInRank[face].count(rank));
    }


266
267
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
268
    vector<ElementObjectData>& getElements(DegreeOfFreedom vertex)
Thomas Witkowski's avatar
Thomas Witkowski committed
269
270
271
272
    {
      return vertexElements[vertex];
    }

273
    /// Returns a vector with all macro elements that have a given edge in common.
274
    vector<ElementObjectData>& getElements(DofEdge edge)
Thomas Witkowski's avatar
Thomas Witkowski committed
275
276
277
278
    {
      return edgeElements[edge];
    }

279
    /// Returns a vector with all macro elements that have a given face in common.
280
    vector<ElementObjectData>& getElements(DofFace face)
Thomas Witkowski's avatar
Thomas Witkowski committed
281
282
283
284
    {
      return faceElements[face];
    }

285

286
287
    /// Returns a vector with all macro elements that have a given vertex DOF 
    /// in common.
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    vector<ElementObjectData>& getElementsVertex(int elIndex, int ithVertex)
    {
      ElementObjectData elObj(elIndex, ithVertex);
      DegreeOfFreedom vertex = vertexLocalMap[elObj];
      return vertexElements[vertex];
    }
    
    /// Returns a vector with all macro elements that have a given edge in common.
    vector<ElementObjectData>& getElementsEdge(int elIndex, int ithEdge)
    {
      ElementObjectData elObj(elIndex, ithEdge);
      DofEdge edge = edgeLocalMap[elObj];
      return edgeElements[edge];
    }

    /// Returns a vector with all macro elements that have a given face in common.
    vector<ElementObjectData>& getElementsFace(int elIndex, int ithFace)
    {
      ElementObjectData elObj(elIndex, ithFace);
      DofFace face = faceLocalMap[elObj];
      return faceElements[face];
    }


312
313
314
    
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given vertex DOF in common.
315
    map<int, ElementObjectData>& getElementsInRank(DegreeOfFreedom vertex)
316
317
318
319
    {
      return vertexInRank[vertex];
    }

320
321
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given edge in common.
322
    map<int, ElementObjectData>& getElementsInRank(DofEdge edge)
323
324
325
326
    {
      return edgeInRank[edge];
    }

327
328
    /// Returns a map that maps to each rank all macro elements in this rank that
    /// have a given face in common.
329
    map<int, ElementObjectData>& getElementsInRank(DofFace face)
330
331
332
333
    {
      return faceInRank[face];
    }

334
    /// Returns to an element object data the appropriate vertex DOF.
335
336
    DegreeOfFreedom getVertexLocalMap(ElementObjectData &data)
    {
337
338
      TEST_EXIT_DBG(vertexLocalMap.count(data))("Should not happen!\n");

339
340
341
      return vertexLocalMap[data];
    }

342
    /// Returns to an element object data the appropriate edge.
343
344
    DofEdge getEdgeLocalMap(ElementObjectData &data)
    {
345
346
      TEST_EXIT_DBG(edgeLocalMap.count(data))("Should not happen!\n");

347
348
349
      return edgeLocalMap[data];
    }

350
    /// Returns to an element object data the appropriate face.
351
352
    DofFace getFaceLocalMap(ElementObjectData &data)
    {
353
354
      TEST_EXIT_DBG(faceLocalMap.count(data))("Should not happen!\n");

355
356
357
      return faceLocalMap[data];
    }

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    PerBoundMap<DegreeOfFreedom>::type& getPeriodicVertices()
    {
      return periodicVertices;
    }

    PerBoundMap<DofEdge>::type& getPeriodicEdges()
    {
      return periodicEdges;
    }

    PerBoundMap<DofFace>::type& getPeriodicFaces()
    {
      return periodicFaces;
    }

373
374
    inline bool getEdgeReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
375
    {
376
377
378
      if (mesh->getDim() == 2)
	return true;

379
380
381
382
383
384
      TEST_EXIT_DBG(edgeReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return edgeReverseMode[make_pair(obj0, obj1)];
    }

385
386
    inline bool getFaceReverseMode(ElementObjectData &obj0, 
				   ElementObjectData &obj1)
387
388
389
390
391
392
393
    {
      TEST_EXIT_DBG(faceReverseMode.count(make_pair(obj0, obj1)))
	("Should not happen!\n");

      return faceReverseMode[make_pair(obj0, obj1)];
    }

394
395
396
397
398
399
    /// Returns true if there is periodic data.
    bool hasPeriodicData()
    {
      return (periodicVertices.size() != 0);
    }

400
401
402
403
404
405
406
407
    /// Returns true if the given boundary type is larger or equal to the smallest
    /// periodic boundary ID in mesh. See \ref smallestPeriodicBcType for more
    /// information.
    bool isValidPeriodicType(BoundaryType t) const
    {
      return (t >= smallestPeriodicBcType);
    }

408
409
410
411
412
413
414
415
416
417
    inline Element* getElementPtr(int index)
    {
      return macroElIndexMap[index];
    }

    inline int getElementType(int index)
    {
      return macroElIndexTypeMap[index];
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
418
419
420
421
422
423
424
    void setData(map<int, int> &rankMap,
		MeshLevelData& ld)
    {
      macroElementRankMap = &rankMap;
      levelData = &ld;
    }

425
    /// Write the element database to disk.
426
    void serialize(ostream &out);
427
428
    
    /// Read the element database from disk.
429
    void deserialize(istream &in);
430

431
  protected:
432
433
434
435
436
437
438
439
440
    /** \brief
     * Adds an element to the object database. If the element is part of a
     * periodic boundary, all information about subobjects of the element on
     * this boundary are collected.
     *
     * \param[in]  elInfo    ElInfo object of the element. 
     */
    void addElement(ElInfo *elInfo);

441
    /// Adds the i-th DOF vertex of an element to the object database.
Thomas Witkowski's avatar
Thomas Witkowski committed
442
    void addVertex(Element *el, int ith);
443
444

    /// Adds the i-th edge of an element to the object database.
Thomas Witkowski's avatar
Thomas Witkowski committed
445
    void addEdge(Element *el, int ith);
446
447

    /// Adds the i-th face of an element to the object database.
Thomas Witkowski's avatar
Thomas Witkowski committed
448
    void addFace(Element *el, int ith);
449

450
451
452
453
454
455
456
457
458
459
    /** \brief
     * Creates final data of the periodic boundaries. Must be called after all
     * elements of the mesh are added to the object database. Then this functions
     * search for indirectly connected vertices in periodic boundaries. This is
     * only the case, if there are more than one boundary conditions. Then, e.g., 
     * in 2D, all edges of a square are iterectly connected. In 3D, if the macro 
     * mesh is a box, all eight vertex nodes and always four of the 12 edges are 
     * indirectly connected.
     */
    void createPeriodicData();
Thomas Witkowski's avatar
Thomas Witkowski committed
460
    
461
462
463
464
465
466
    /// Creates on all boundaries the reverse mode flag.
    void createReverseModeData();

    BoundaryType getNewBoundaryType();

    BoundaryType provideConnectedPeriodicBoundary(BoundaryType b0, 
467
						  BoundaryType b1);
468
469

    /// Some auxiliary function to write the element object database to disk.
470
    void serialize(ostream &out, vector<ElementObjectData>& elVec);
471

472
    /// Some auxiliary function to read the element object database from disk.
473
    void deserialize(istream &in, vector<ElementObjectData>& elVec);
474

475
    /// Some auxiliary function to write the element object database to disk.
476
    void serialize(ostream &out, map<int, ElementObjectData>& data);
477

478
    /// Some auxiliary function to read the element object database from disk.
479
    void deserialize(istream &in, map<int, ElementObjectData>& data);
480

481
    int getOwner(vector<ElementObjectData>& objData, int level);
Thomas Witkowski's avatar
Thomas Witkowski committed
482
  private:
483
484
    const FiniteElemSpace* feSpace;

485
486
    /// The mesh that is used to store all its element information in 
    /// the database.
487
    Mesh *mesh;
488
    
489
    /// Maps to each vertex DOF all element objects that represent this vertex.
490
    map<DegreeOfFreedom, vector<ElementObjectData> > vertexElements;
491
492

    /// Maps to each edge all element objects that represent this edge.
493
    map<DofEdge, vector<ElementObjectData> > edgeElements;
Thomas Witkowski's avatar
Thomas Witkowski committed
494

495
496
    /// Maps to each face all element objects that represent this edge.
    map<DofFace, vector<ElementObjectData> > faceElements;
497

498
499
    
    /// Maps to an element object the corresponding vertex DOF.
500
    map<ElementObjectData, DegreeOfFreedom> vertexLocalMap;
501
502

    /// Maps to an element object the corresponding edge.
503
    map<ElementObjectData, DofEdge> edgeLocalMap;
504
505

    /// Maps to an element object the corresponding face.
506
    map<ElementObjectData, DofFace> faceLocalMap;
507

508
   
509
510
    /// Defines to each vertex DOF a map that maps to each rank number the element
    /// objects that have this vertex DOF in common.
511
    map<DegreeOfFreedom, map<int, ElementObjectData> > vertexInRank;
512

513
514
    /// Defines to each edge a map that maps to each rank number the element 
    /// objects that have this edge in common.
515
    map<DofEdge, map<int, ElementObjectData> > edgeInRank;
516

517
518
    /// Defines to each face a map that maps to each rank number the element 
    /// objects that have this face in common.
519
    map<DofFace, map<int, ElementObjectData> > faceInRank;
Thomas Witkowski's avatar
Thomas Witkowski committed
520

521
522

    /// Vertex iterator to iterate over \ref vertexInRank
523
    map<DegreeOfFreedom, map<int, ElementObjectData> >::iterator vertexIter;
524
525

    /// Edge iterator to iterate over \ref edgeInRank
526
    map<DofEdge, map<int, ElementObjectData> >::iterator edgeIter;
527
528

    /// Face iterator to iterate over \ref faceInRank
529
    map<DofFace, map<int, ElementObjectData> >::iterator faceIter;
Thomas Witkowski's avatar
Thomas Witkowski committed
530

531
532
533
534
535

    /// Defines the geometrical iteration index of the iterators. I.e., the value
    /// is either VERTEX, EDGE or FACE and the corresponding element objects are
    /// traversed. The value CENTER is used to define a not defined states of the
    /// iterators, i.e., if no iteration is running.
Thomas Witkowski's avatar
Thomas Witkowski committed
536
    GeoIndex iterGeoPos;
537

538
    map<pair<BoundaryType, BoundaryType>, BoundaryType> bConnMap;
539

540
    /// The following three data structures store periodic DOFs, edges and faces.
541
542
543
    PerBoundMap<DegreeOfFreedom>::type periodicVertices;
    PerBoundMap<DofEdge>::type periodicEdges;
    PerBoundMap<DofFace>::type periodicFaces;
544

545
546
547
548
549
550
551
    /// Defines the smallest boudary ID for periodic boundary conditions. This is
    /// required to distinguish between "real" periodic boundaries and periodic
    /// boundary IDs that are set by the parallel algorithm for indirectly 
    /// connected boundaries.
    BoundaryType smallestPeriodicBcType;

    /// Stores to each vertex all its periodic associations.
552
    map<DegreeOfFreedom, std::set<BoundaryType> > periodicDofAssoc;
553

554
    /// Stores to each edge all its periodic associations.
555
556
557
558
559
    map<DofEdge, std::set<DofEdge> > periodicEdgeAssoc;

    map<pair<ElementObjectData, ElementObjectData>, bool> edgeReverseMode;

    map<pair<ElementObjectData, ElementObjectData>, bool> faceReverseMode;
560

561
562
    map<int, int> *macroElementRankMap;

563
564
565
566
567
    /// Maps to each macro element index a pointer to the corresponding element.
    map<int, Element*> macroElIndexMap;
    
    /// Maps to each macro element index the type of this element.
    map<int, int> macroElIndexTypeMap;
568
569

    MeshLevelData* levelData;
Thomas Witkowski's avatar
Thomas Witkowski committed
570
571
572
573
574
  };

}

#endif