MeshDistributor.h 25.1 KB
Newer Older
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


20

21
/** \file MeshDistributor.h */
22

23
24
#ifndef AMDIS_MESHDISTRIBUTOR_H
#define AMDIS_MESHDISTRIBUTOR_H
25
26


Thomas Witkowski's avatar
Thomas Witkowski committed
27
#include <mpi.h>
28
#include "parallel/DofComm.h"
29
#include "parallel/ElementObjectData.h"
30
#include "parallel/ParallelTypes.h"
31
#include "parallel/MeshPartitioner.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
32
#include "parallel/InteriorBoundary.h"
33
#include "parallel/StdMpi.h"
34
#include "AMDiS_fwd.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
35
#include "Global.h"
36
37
#include "ProblemTimeInterface.h"
#include "ProblemIterationInterface.h"
38
#include "FiniteElemSpace.h"
39
#include "Serializer.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
40
#include "BoundaryManager.h"
41
#include "SystemVector.h"
42

43
namespace AMDiS {
44
45

  using namespace std;
Thomas Witkowski's avatar
Thomas Witkowski committed
46
47
48
49


  struct BoundaryDofInfo
  {
50
    map<GeoIndex, DofContainerSet> geoDofs;
Thomas Witkowski's avatar
Thomas Witkowski committed
51
52
  };

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

  struct DofData
  {
    /// Number of DOFs in the rank mesh.
    int nRankDofs;

    /// Is the index of the first global DOF index, which is owned by the rank.
    int rStartDofs;

    /// Number of DOFs in the whole domain.
    int nOverallDofs;

    /** \brief
     * Maps all DOFs in ranks partition to a bool value. If it is true, the DOF 
     * is owned by the rank. Otherwise, its an interior boundary DOF that is 
     * owned by another rank.
     */
    DofIndexToBool isRankDof;

    /// Maps local to global dof indices.
    DofMapping mapLocalGlobalDofs;

    /// Maps local dof indices to real dof indices.
    DofMapping mapLocalDofIndex;  
  };
78
79


80
  class MeshDistributor
81
  {
82
  private:
83
    MeshDistributor();
84
	          
85
    virtual ~MeshDistributor() {}
86

87
  public:
88
    void initParallelization();
89

90
    void exitParallelization();
91

92
93
94
    /// Adds a DOFVector to the set of \ref interchangeVecs. Thus, this vector 
    /// will be automatically interchanged between ranks when mesh is 
    /// repartitioned.
95
96
97
98
99
    void addInterchangeVector(DOFVector<double> *vec)
    {
      interchangeVectors.push_back(vec);
    }

100
101
102
103
104
105
106
    /// Adds all DOFVectors of a SystemVector to \ref interchangeVecs.
    void addInterchangeVector(SystemVector *vec)
    {
      for (int i = 0; i < vec->getSize(); i++)
	interchangeVectors.push_back(vec->getDOFVector(i));
    }
    
107
    /** \brief
108
109
110
111
112
     * This function checks if the mesh has changed on at least on rank. In 
     * this case, the interior boundaries are adapted on all ranks such that 
     * they fit together on all ranks. Furthermore the function 
     * \ref updateLocalGlobalNumbering() is called to update the DOF numberings 
     * and mappings on all rank due to the new mesh structure.
113
     *
114
115
116
117
118
     * \param[in]  tryRepartition   If this parameter is true, repartitioning 
     *                              may be done. This depends on several other 
     *                              parameters. If the parameter is false, the 
     *                              mesh is only checked and adapted but never 
     *                              repartitioned.
119
     */
120
    void checkMeshChange(bool tryRepartition = true);
121

122
123
124
125
126
127
128
129
130
131
    /** \brief
     * Checks if is required to repartition the mesh. If this is the case, a new
     * partition will be created and the mesh will be redistributed between the
     * ranks.
     */
    void repartitionMesh();
    
    /// Calculates the imbalancing factor and prints it to screen.
    void printImbalanceFactor();

132
    /** \brief
133
134
135
136
     * Test, if the mesh consists of macro elements only. The mesh partitioning 
     * of the parallelization works for macro meshes only and would fail, if the 
     * mesh is already refined in some way. Therefore, this function will exit
     * the program if it finds a non macro element in the mesh.
137
138
     */
    void testForMacroMesh();
139

140
141
    /// Set for each element on the partitioning level the number of 
    /// leaf elements.
142
    void setInitialElementWeights();
143

144
    inline virtual string getName() 
145
146
147
    { 
      return name; 
    }
148

Thomas Witkowski's avatar
Thomas Witkowski committed
149
150
151
152
153
    inline Mesh* getMesh()
    {
      return mesh;
    }

154
155
    /// Returns an FE space from \ref feSpaces.
    inline const FiniteElemSpace* getFeSpace(unsigned int i = 0)
156
    {
157
158
159
160
161
      FUNCNAME("MeshDistributor::getFeSpace()");

      TEST_EXIT_DBG(i < feSpaces.size())("Should not happen!\n");

      return feSpaces[i];
162
    }
163
164
165
166
167
168
169

    /// Returns all FE spaces, thus \ref feSpaces.
    inline vector<const FiniteElemSpace*>& getFeSpaces()
    {
      return feSpaces;
    }

170
    /// Returns the number of DOFs in rank's domain for a given FE space.
171
    inline int getNumberRankDofs(const FiniteElemSpace *feSpace) 
172
    {
173
174
175
176
      FUNCNAME("MeshDistributor::getNumberRankDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

177
      return dofFeData[feSpace].nRankDofs;
178
    }
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    /// Returns the number of DOFs in rank's domain for a set of FE spaces.
    inline int getNumberRankDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getNumberRankDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");
	result += dofFeData[feSpaces[i]].nRankDofs;
      }

      return result;
    }
    
    /// Returns the first global DOF index of an FE space, owned by rank.
195
    inline int getStartDofs(const FiniteElemSpace *feSpace)
196
    {
197
198
199
200
      FUNCNAME("MeshDistributor::getStartDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

201
      return dofFeData[feSpace].rStartDofs;
202
203
    }

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    /// Returns the first global DOF index for a set of FE spaces, owned by rank.
    inline int getStartDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getStartDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");

	result += dofFeData[feSpaces[i]].rStartDofs;
      }

      return result;
    }

    /// Returns the global number of DOFs for a given FE space.
220
    inline int getNumberOverallDofs(const FiniteElemSpace *feSpace)
221
    {
222
223
224
225
      FUNCNAME("MeshDistributor::getNumberOverallDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

226
      return dofFeData[feSpace].nOverallDofs;
227
    }
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    /// Returns the global number of DOFs for a set of FE spaces.
    inline int getNumberOverallDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getNumberOverallDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");

	result += dofFeData[feSpaces[i]].nOverallDofs;
      }

      return result;
    }

244
    inline DofMapping& getMapLocalGlobalDofs(const FiniteElemSpace *feSpace)
Thomas Witkowski's avatar
Thomas Witkowski committed
245
    {
246
247
248
249
      FUNCNAME("MeshDistributor::getMapLocalGlobalDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

250
      return dofFeData[feSpace].mapLocalGlobalDofs;
Thomas Witkowski's avatar
Thomas Witkowski committed
251
252
    }

253
    /// Maps a local DOF to its global index.
254
255
    inline DegreeOfFreedom mapLocalToGlobal(const FiniteElemSpace *feSpace,
					    DegreeOfFreedom dof)
256
    {
257
258
259
260
261
      FUNCNAME("MeshDistributor::mapLocalToGlobal()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))
	("No DOF data for FE space at addr %p!\n", feSpace);

262
      return dofFeData[feSpace].mapLocalGlobalDofs[dof];
263
    }
264

265
266
    DegreeOfFreedom mapGlobalToLocal(const FiniteElemSpace *feSpace,
				     DegreeOfFreedom dof);
267

268
    /// Maps a local DOF to its local index.
269
270
    inline DegreeOfFreedom mapLocalToDofIndex(const FiniteElemSpace *feSpace,
					      DegreeOfFreedom dof)
271
    {
272
273
274
275
276
      FUNCNAME("MeshDistributor::mapLocalToDofIndex()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))
	("No DOF data for FE space at addr %p!\n", feSpace);

277
      return dofFeData[feSpace].mapLocalDofIndex[dof];
278
279
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
280
281
282
283
284
285
    /// Returns the periodic mapping for all boundary DOFs in rank.
    inline PeriodicDofMap& getPeriodicMapping()
    {
      return periodicDof;
    }

286
287
    /// Returns for a global dof index its periodic mapping for a given 
    /// boundary type.
288
    inline int getPeriodicMapping(int globalDofIndex, BoundaryType type)
289
    {
Thomas Witkowski's avatar
Thomas Witkowski committed
290
291
      FUNCNAME("MeshDistributor::getPeriodicMapping()");

292
      TEST_EXIT_DBG(periodicDof[type].count(globalDofIndex) == 1)
Thomas Witkowski's avatar
Thomas Witkowski committed
293
294
	("There is no periodic association for global DOF %d for boundary type %d!\n",
	 globalDofIndex, type);
295
296
297
298

      return periodicDof[type][globalDofIndex];
    }

299
    /// For a given global DOF index, this function returns the set of periodic
300
301
    /// associations, i.e., the boundary types the DOF is associated to, for 
    /// this DOF.
302
    inline std::set<BoundaryType>& getPerDofAssociations(int globalDofIndex)
303
    {      
304
305
306
      TEST_EXIT_DBG(periodicDofAssociations.count(globalDofIndex)) 
 	("Should not happen!\n"); 

307
      return periodicDofAssociations[globalDofIndex];
308
    }
309

310
    /// Returns true, if the DOF (global index) is a periodic DOF.
311
    inline bool isPeriodicDof(int globalDofIndex)
312
    {
313
314
      return (periodicDofAssociations.count(globalDofIndex) > 0 &&
	       periodicDofAssociations[globalDofIndex].size() > 0);
315
316
    }

317
318
319
    /// Returns true, if the DOF (global index) is a periodic DOF for the given
    /// boundary type.
    inline bool isPeriodicDof(int globalDofIndex, BoundaryType type)
320
321
    {
      return (periodicDof[type].count(globalDofIndex) > 0);
322
323
    }

324
    DofComm& getSendDofs()
325
326
327
328
    {
      return sendDofs;
    }

329
    DofComm& getRecvDofs()
330
331
332
333
    {
      return recvDofs;
    }

334
335
    /// Return true, if the given DOF is owned by the rank. If false, the DOF
    /// is in rank's partition, but is owned by some other rank.
336
    inline bool getIsRankDof(const FiniteElemSpace *feSpace, DegreeOfFreedom dof)
337
    {
338
339
      if (dofFeData[feSpace].isRankDof.count(dof))
	return dofFeData[feSpace].isRankDof[dof];
340
341

      return false;
342
    }
343

344
    inline DofIndexToBool& getIsRankDof(const FiniteElemSpace *feSpace)
345
    {
346
      return dofFeData[feSpace].isRankDof;
347
348
    }

349
    inline long getLastMeshChangeIndex()
350
    {
351
      return lastMeshChangeIndex;
352
    }
353

354
    inline int getMpiRank()
355
    {
356
      return mpiRank;
357
    }
358

Thomas Witkowski's avatar
Thomas Witkowski committed
359
360
361
362
363
    inline int getMpiSize()
    {
      return mpiSize;
    }

364
365
366
    inline MPI::Intracomm& getMpiComm()
    {
      return mpiComm;
367
368
    }

369
370
    /// Creates a set of all DOFs that are on interior boundaries of rank's
    /// domain. Thus, it creates the union of \ref sendDofs and \ref recvDofs.
371
372
    void createBoundaryDofs(const FiniteElemSpace *feSpace,
			    std::set<DegreeOfFreedom> &boundaryDofs);
373

374
    // Writes all data of this object to an output stream.
375
    void serialize(ostream &out);
376

377
    // Reads the object data from an input stream.
378
    void deserialize(istream &in);
379
380

    /** \brief
381
382
383
384
     * This function must be used if the values of a DOFVector must be 
     * synchronised over all ranks. That means, that each rank sends the 
     * values of the DOFs, which are owned by the rank and lie on an interior 
     * bounday, to all other ranks also having these DOFs.
385
     *
386
387
388
     * This function must be used, for example, after the lineary system is 
     * solved, or after the DOFVector is set by some user defined functions, 
     * e.g., initial solution functions.
389
     */    
390
391
392
393
394
    template<typename T>
    void synchVector(DOFVector<T> &vec) 
    {
      StdMpi<vector<T> > stdMpi(mpiComm);

395
396
      const FiniteElemSpace *fe = vec.getFeSpace();

397
      for (DofComm::Iterator it(sendDofs, fe); !it.end(); it.nextRank()) {
398
	vector<T> dofs;
399
	dofs.reserve(it.getDofs().size());
400
	
401
402
	for (; !it.endDofIter(); it.nextDof())
	  dofs.push_back(vec[it.getDofIndex()]);
403
	
404
	stdMpi.send(it.getRank(), dofs);
405
      }
406
407
408
409
	     
      for (DofComm::Iterator it(recvDofs); !it.end(); it.nextRank())
        stdMpi.recv(it.getRank());
	     
410
      stdMpi.startCommunication();
411
412
413
414
415

      for (DofComm::Iterator it(recvDofs, fe); !it.end(); it.nextRank())
	for (; !it.endDofIter(); it.nextDof())
	  vec[it.getDofIndex()] = 
	     stdMpi.getRecvData(it.getRank())[it.getDofCounter()];
416
417
    }
    
418
    /** \brief
419
420
421
     * Works in the same way as the function above defined for DOFVectors. Due
     * to performance, this function does not call \ref synchVector for each 
     * DOFVector, but instead sends all values of all DOFVectors all at once.
422
423
424
     */
    void synchVector(SystemVector &vec);

425
426
    void check3dValidMesh();

Thomas Witkowski's avatar
Thomas Witkowski committed
427
428
429
430
431
    void setBoundaryDofRequirement(Flag flag)
    {
      createBoundaryDofFlag = flag;
    }

432
    BoundaryDofInfo& getBoundaryDofInfo(const FiniteElemSpace *feSpace)
433
    {
434
      return boundaryDofInfo[feSpace];
435
436
    }

437
438
    void getAllBoundaryDofs(const FiniteElemSpace *feSpace,
			    DofContainer& dofs);
439

440
441
442
443
444
445

  public:
    /// Adds a stationary problem to the global mesh distributor objects.
    static void addProblemStatGlobal(ProblemStatSeq *probStat);

    
446
  protected:
447
448
    void addProblemStat(ProblemStatSeq *probStat);

449
450
    /// Determines the interior boundaries, i.e. boundaries between ranks, and
    /// stores all information about them in \ref interiorBoundary.
451
    void createInteriorBoundaryInfo();
452

Thomas Witkowski's avatar
Thomas Witkowski committed
453
454
455
456
457
    void updateInteriorBoundaryInfo();

    void createMeshElementData();

    void createBoundaryData();
Thomas Witkowski's avatar
Thomas Witkowski committed
458

Thomas Witkowski's avatar
Thomas Witkowski committed
459
460
    void createBoundaryDofs();

461
462
    void createBoundaryDofs(const FiniteElemSpace *feSpace);

463
464
    /// Removes all macro elements from the mesh that are not part of ranks 
    /// partition.
465
466
    void removeMacroElements();

467
468
    void updateLocalGlobalNumbering();

469
470
    /// Updates the local and global DOF numbering after the mesh has been 
    /// changed.
471
    void updateLocalGlobalNumbering(const FiniteElemSpace *feSpace);
472

473
    /** \brief
474
475
476
     * Creates to all dofs in rank's partition that are on a periodic boundary
     * the mapping from dof index to the other periodic dof indices. This 
     * information is stored in \ref periodicDof.
477
     */
478
    void createPeriodicMap(const FiniteElemSpace *feSpace);
479

480
481
482
483
484
485
486
487
    /** \brief
     * This function is called only once during the initialization when the
     * whole macro mesh is available on all cores. It copies the pointers of all
     * macro elements to \ref allMacroElements and stores all neighbour 
     * information based on macro element indices (and not pointer based) in 
     * \ref macroElementNeighbours. These information are then used to 
     * reconstruct macro elements during mesh redistribution.
     */
488
489
    void createMacroElementInfo();

490
491
    void updateMacroElementInfo();

492
    /** \brief
493
494
495
496
497
498
     * Checks for all given interior boundaries if the elements fit together on
     * both sides of the boundaries. If this is not the case, the mesh is 
     * adapted. Because refinement of a certain element may forces the 
     * refinement of other elements, it is not guaranteed that all rank's meshes
     * fit together after this function terminates. Hence, it must be called 
     * until a stable mesh refinement is reached.
499
     *
500
501
     * \param[in] allBound   Defines a map from rank to interior boundaries 
     *                       which should be checked.
502
     *
503
504
505
     * \return    If the mesh has  been changed by this function, it returns 
     *            true. Otherwise, it returns false, i.e., the given interior 
     *            boundaries fit together on both sides.
506
507
     */
    bool checkAndAdaptBoundary(RankToBoundMap &allBound);
508
  
509
510
    /// Sets \ref isRankDof to all matrices and rhs vectors in a given 
    /// stationary problem.
511
    void setRankDofs(ProblemStatSeq *probStat);
512

513
514
    /// Sets \ref isRankDof to all matrices and rhs vectors in all 
    /// stationary problems.
515
516
    void setRankDofs();

517
518
519
520
    /// Removes all periodic boundary condition information from all matrices and
    /// vectors of all stationary problems and from the mesh itself.
    void removePeriodicBoundaryConditions();

Thomas Witkowski's avatar
Thomas Witkowski committed
521
    // Removes all periodic boundaries from a given boundary map.
522
    void removePeriodicBoundaryConditions(BoundaryIndexMap& boundaryMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
523

524
    /// Writes a vector of dof pointers to an output stream.
525
    void serialize(ostream &out, DofContainer &data);
526

527
528
529
530
    /// Writes a \ref RankToDofContainer to an output stream.
    void serialize(ostream &out, 
		   map<int, map<const FiniteElemSpace*, DofContainer> > &data);

531
    /// Reads a vector of dof pointers from an input stream.
532
533
    void deserialize(istream &in, DofContainer &data,
		     map<int, const DegreeOfFreedom*> &dofMap);
534
535

    /// Reads a \ref RankToDofContainer from an input stream.
536
537
538
    void deserialize(istream &in, 
		     map<int, map<const FiniteElemSpace*, DofContainer> > &data,
		     map<const FiniteElemSpace*, map<int, const DegreeOfFreedom*> > &dofMap);
539

540
    /// Writes a periodic dof mapping to an output stream.
541
    void serialize(ostream &out, PeriodicDofMap &data);
542

543
    void serialize(ostream &out, map<int, std::set<int> >& data);
544

545
    /// Reads a periodic dof mapping from an input stream.
546
    void deserialize(istream &in, PeriodicDofMap &data);
547

548
    void deserialize(istream &in, map<int, std::set<int> >& data);
549

550
551
    /// Writes a mapping from dof pointers to some values to an output stream.
    template<typename T>
552
    void serialize(ostream &out, map<const DegreeOfFreedom*, T> &data)
553
    {
554
555
      FUNCNAME("ParallelDomainBase::serialize()");

556
      int mapSize = data.size();
557
      SerUtil::serialize(out, mapSize);
558
      for (typename map<const DegreeOfFreedom*, T>::iterator it = data.begin();
559
560
561
	   it != data.end(); ++it) {
	int v1 = (*(it->first));
	T v2 = it->second;
562
563
	SerUtil::serialize(out, v1);
	SerUtil::serialize(out, v2);
564
565
566
567
568
      }
    }

    /// Reads a mapping from dof pointer to some values from an input stream.
    template<typename T>
569
570
    void deserialize(istream &in, map<const DegreeOfFreedom*, T> &data,
		     map<int, const DegreeOfFreedom*> &dofMap)
571
    {
572
573
      FUNCNAME("ParallelDomainBase::deserialize()");

574
      int mapSize = 0;
575
      SerUtil::deserialize(in, mapSize);
576
577
578
      for (int i = 0; i < mapSize; i++) {
	int v1 = 0;
	T v2;
579
580
	SerUtil::deserialize(in, v1);
	SerUtil::deserialize(in, v2);
581
582
583

	TEST_EXIT_DBG(dofMap.count(v1) != 0)("Cannot find DOF %d in map!\n", v1);

584
585
586
	data[dofMap[v1]] = v2;
      }
    }
587

588
  protected:
589
590
    /// List of all stationary problems that are managed by this mesh 
    /// distributor.
591
    vector<ProblemStatSeq*> problemStat;
Thomas Witkowski's avatar
Thomas Witkowski committed
592

593
594
595
    /// If true, the mesh distributor is already initialized;
    bool initialized;

596
597
598
599
600
601
    /// The rank of the current process.
    int mpiRank;

    /// Overall number of processes.
    int mpiSize;

602
603
    /// MPI communicator collected all processes, which should be used for
    /// calculation. The Debug procces is not included in this communicator.
604
605
606
    MPI::Intracomm mpiComm;

    /// Name of the problem (as used in the init files)
607
    string name;
608

609
610
    /// Finite element spaces of the problem.
    vector<const FiniteElemSpace*> feSpaces;
611

612
613
614
    /// Mesh of the problem.
    Mesh *mesh;

615
    /** \brief
616
617
618
     * A refinement manager that should be used on the mesh. It is used to 
     * refine elements at interior boundaries in order to fit together with 
     * elements on the other side of the interior boundary.
619
620
621
     */    
    RefinementManager *refineManager;

622
623
624
    /// Info level.
    int info;

625
626
    /// Pointer to a mesh partitioner that is used to partition the mesh to 
    /// the ranks.
627
    MeshPartitioner *partitioner;
628

629
630
    /// Weights for the elements, i.e., the number of leaf elements within 
    /// this element.
631
    map<int, double> elemWeights;
632
633

    /** \brief
634
635
     * Stores to every macro element index the number of the rank that owns this
     * macro element.
636
     */
637
    map<int, int> partitionMap;
638

639
    map<const FiniteElemSpace*, DofData> dofFeData;
640

641
642
    /// Data structure to store all sub-objects of all elements of the 
    /// macro mesh.
Thomas Witkowski's avatar
Thomas Witkowski committed
643
644
    ElementObjects elObjects;

645
    /// Maps to each macro element index a pointer to the corresponding element.
646
    map<int, Element*> macroElIndexMap;
Thomas Witkowski's avatar
Thomas Witkowski committed
647
    
648
    /// Maps to each macro element index the type of this element.
649
    map<int, int> macroElIndexTypeMap;
Thomas Witkowski's avatar
Thomas Witkowski committed
650

Thomas Witkowski's avatar
Thomas Witkowski committed
651
    /** \brief 
652
653
654
655
     * Defines the interior boundaries of the domain that result from 
     * partitioning the whole mesh. Contains only the boundaries, which are 
     * owned by the rank, i.e., the object gives for every neighbour rank i 
     * the boundaries this rank owns and shares with rank i.
Thomas Witkowski's avatar
Thomas Witkowski committed
656
657
658
659
     */
    InteriorBoundary myIntBoundary;
    
    /** \brief
660
661
662
663
     * Defines the interior boundaries of the domain that result from 
     * partitioning the whole mesh. Contains only the boundaries, which are 
     * not owned by the rank, i.e., the object gives for every neighbour rank 
     * i the boundaries that are owned by rank i and are shared with this rank.
Thomas Witkowski's avatar
Thomas Witkowski committed
664
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
665
    InteriorBoundary otherIntBoundary;
Thomas Witkowski's avatar
Thomas Witkowski committed
666

667
    /** \brief
668
669
     * Defines the periodic boundaries with other ranks. Periodic boundaries
     * have no owner, as it is the case of interior boundaries.
670
671
672
     */
    InteriorBoundary periodicBoundary;

673
    /** \brief
674
675
     * This map contains for each rank the list of DOFs the current rank must 
     * send to exchange solution DOFs at the interior boundaries.
676
     */
677
    DofComm sendDofs;
678
679

    /** \brief
680
681
682
     * This map contains on each rank the list of DOFs from which the current 
     * rank will receive DOF values (i.e., this are all DOFs at an interior 
     * boundary). The DOF indices are given in rank's local numbering.
683
     */
684
    DofComm recvDofs;
685

686
    /** \brief
687
688
689
690
     * If periodic boundaries are used, this map stores, for each periodic 
     * boundary type, for all DOFs in rank's partition (that are on periodic 
     * boundaries), the corresponding mapped periodic DOFs. The mapping is 
     * defined by using global DOF indices.
691
     */
692
    PeriodicDofMap periodicDof;
693
694
    
    /** \brief
695
696
697
698
699
     * If periodic boundaries are used, this map stores to each periodic DOF in 
     * rank's partition the set of periodic boundaries the DOF is associated to.
     * In 2D, most DOFs are only on one periodic boundary. Only, e.g., in a box 
     * with all boundaries being periodic, the four corners are associated by 
     * two different boundaries.
700
     */
701
    map<int, std::set<BoundaryType> > periodicDofAssociations;
702

703
704
705
706
707
    
    /// This set of values must be interchanged between ranks when the mesh is 
    /// repartitioned.
    vector<DOFVector<double>*> interchangeVectors;
		        
708
709
710
    /** \brief
     * If the problem definition has been read from a serialization file, this 
     * variable is true, otherwise it is false. This variable is used to stop the
711
712
     * initialization function, if the problem definition has already been read
     * from a serialization file.
713
714
     */
    bool deserialized;
715

716
717
718
    /// Denotes whether there exists a filewriter for this object.
    bool writeSerializationFile;

719
720
721
    /// If true, it is possible to repartition the mesh during computations.
    bool repartitioningAllowed;

722
723
    /// Stores the number of mesh changes that must lie in between to 
    /// repartitionings.
724
725
    int repartitionIthChange;

726
727
    /// Counts the number of mesh changes after the last mesh repartitioning 
    /// was done.
728
    int nMeshChangesAfterLastRepartitioning;
729

730
731
732
    /// Countes the number of mesh repartitions that were done. Till now, this 
    /// variable is used only for debug outputs.
    int repartitioningCounter;
733

734
    /// Directory name where all debug output files should be written to.
735
    string debugOutputDir;
736

737
    /** \brief
738
739
     * Stores the mesh change index. This is used to recognize changes in the
     * mesh structure (e.g. through refinement or coarsening managers).
740
741
     */
    long lastMeshChangeIndex;
742

743
744
745
746
    /// Stores for all macro elements of the original macro mesh the
    /// neighbourhood information based on element indices. Thus, each macro
    /// element index is mapped to a vector containing all indices of 
    /// neighbouring macro elements.
747
    map<int, vector<int> > macroElementNeighbours;
748

749
750
    /// Store all macro elements of the overall mesh, i.e., before the
    /// mesh is redistributed for the first time.
751
    vector<MacroElement*> allMacroElements;
752

Thomas Witkowski's avatar
Thomas Witkowski committed
753
754
    Flag createBoundaryDofFlag;

755
    map<const FiniteElemSpace*, BoundaryDofInfo> boundaryDofInfo;
756

Thomas Witkowski's avatar
Thomas Witkowski committed
757
  public:
758
759
760
    /// The boundary DOFs are sorted by subobject entities, i.e., first all
    /// face DOFs, edge DOFs and to the last vertex DOFs will be set to
    /// communication structure vectors, \ref sendDofs and \ref recvDofs.
Thomas Witkowski's avatar
Thomas Witkowski committed
761
762
    static const Flag BOUNDARY_SUBOBJ_SORTED;

763
764
765
766
767
768
769
770
771
    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will send to other ranks (thus, rank 
    /// owned DOFs.
    static const Flag BOUNDARY_FILL_INFO_SEND_DOFS;

    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will receive from other ranks (thus, DOFs
    /// that are owned by another rank).
    static const Flag BOUNDARY_FILL_INFO_RECV_DOFS;
Thomas Witkowski's avatar
Thomas Witkowski committed
772

773
774
    static MeshDistributor *globalMeshDistributor;

775
    friend class ParallelDebug;
776
777
778
  };
}

779
#endif // AMDIS_MESHDISTRIBUTOR_H