Liebe Gitlab-Nutzerin, lieber Gitlab-Nutzer,
es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Die Konten der externen Nutzer:innen sind über den Reiter "Standard" erreichbar.
Die Administratoren


Dear Gitlab user,
it is now possible to log in to our service using the ZIH login/LDAP. The accounts of external users can be accessed via the "Standard" tab.
The administrators

PetscSolverFeti.cc 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


#include "parallel/PetscSolverFeti.h"
#include "parallel/StdMpi.h"
#include "parallel/MpiHelper.h"

namespace AMDiS {

  using namespace std;


#ifdef HAVE_PETSC_DEV 
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  // y = mat * x
  int petscMultMatSchurPrimal(Mat mat, Vec x, Vec y)
  {
    // S_PiPi = K_PiPi - K_PiB inv(K_BB) K_BPi

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscSchurPrimalData* data = static_cast<PetscSchurPrimalData*>(ctx);

    MatMult(*(data->mat_b_primal), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);

    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    MatMult(*(data->mat_primal_primal), x, y);
    VecAXPBY(y, -1.0, 1.0, data->tmp_vec_primal);

    return 0;
  }


  // y = mat * x
  int petscMultMatFeti(Mat mat, Vec x, Vec y)
  {
    // F = L inv(K_BB) trans(L) + L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscFetiData* data = static_cast<PetscFetiData*>(ctx);

    // y = L inv(K_BB) trans(L) x
    MatMultTranspose(*(data->mat_lagrange), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, y);

    // tmp_vec_primal = inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    KSPSolve(*(data->ksp_schur_primal), data->tmp_vec_primal, data->tmp_vec_primal);

    // tmp_vec_lagrange = L inv(K_BB) K_BPi tmp_vec_primal
    //                  = L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_b_primal), data->tmp_vec_primal, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, data->tmp_vec_lagrange);

    VecAXPBY(y, 1.0, 1.0, data->tmp_vec_lagrange);

    return 0;
  }


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  // y = PC * x
  PetscErrorCode petscApplyFetiPrecon(PC pc, Vec x, Vec y)
  {
    void *ctx;
    PCShellGetContext(pc, &ctx);
    PetscFetiPreconData* data = static_cast<PetscFetiPreconData*>(ctx);

    MatMultTranspose(*(data->mat_lagrange_scaled), x, data->tmp_vec_b);

    int sizeB;
    int sizeBound;
    VecGetLocalSize(data->tmp_vec_b, &sizeB);
    VecGetLocalSize(data->tmp_vec_bound0, &sizeBound);

    PetscScalar *local_b;
    VecGetArray(data->tmp_vec_b, &local_b);

    PetscScalar *local_bound;
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_bound[j] = local_b[i];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);



    MatMult(*(data->mat_bound_bound), data->tmp_vec_bound0, data->tmp_vec_bound1);

    MatMult(*(data->mat_interior_bound), data->tmp_vec_bound0, data->tmp_vec_interior);
    KSPSolve(*(data->ksp_interior), data->tmp_vec_interior, data->tmp_vec_interior);
    MatMult(*(data->mat_bound_interior), data->tmp_vec_interior, data->tmp_vec_bound0);

    VecAXPBY(data->tmp_vec_bound0, 1.0, -1.0, data->tmp_vec_bound1);



    VecGetArray(data->tmp_vec_b, &local_b);
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_b[i] = local_bound[j];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);




    MatMult(*(data->mat_lagrange_scaled), data->tmp_vec_b, y);

    return 0;
  }


129
  void PetscSolverFeti::updateDofData()
130 131
  {
    FUNCNAME("PetscSolverFeti::updateDofData()");
132 133 134

    TEST_EXIT(meshDistributor->getFeSpace()->getBasisFcts()->getDegree() == 1)
      ("Works for linear basis functions only!\n");
135
   
136 137 138 139 140 141 142
    createPrimals();

    createDuals();

    createLagrange();

    createIndexB();
143 144 145
  }


146
  void PetscSolverFeti::createPrimals()
147
  {
148
    FUNCNAME("PetscSolverFeti::createPrimals()");  
149

150 151 152
    // === Define all vertices on the interior boundaries of the macro mesh ===
    // === to be primal variables.                                          ===

153 154 155 156 157 158 159
    primals.clear();
    DofContainerSet& vertices = 
      meshDistributor->getBoundaryDofInfo().geoDofs[VERTEX];
    TEST_EXIT_DBG(vertices.size())("No primal vertices on this rank!\n");
    for (DofContainerSet::iterator it = vertices.begin(); 
	 it != vertices.end(); ++it)
      primals.insert(**it);
160

161 162 163 164

    // === Calculate the number of primals that are owned by the rank and ===
    // === create local indices of the primals starting at zero.          ===

165
    globalPrimalIndex.clear();
166 167 168 169
    nRankPrimals = 0;
    for (DofIndexSet::iterator it = primals.begin(); it != primals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it)) {
	globalPrimalIndex[*it] = nRankPrimals;
170 171 172
	nRankPrimals++;
      }

173

174 175 176
    // === Get overall number of primals and rank's displacement in the ===
    // === numbering of the primals.                                    ===

177
    nOverallPrimals = 0;
178
    rStartPrimals = 0;
179 180 181
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankPrimals, rStartPrimals, nOverallPrimals);

182 183 184

    // === Create global primal index for all primals. ===

185 186 187 188
    for (DofMapping::iterator it = globalPrimalIndex.begin();
	 it != globalPrimalIndex.end(); ++it)
      it->second += rStartPrimals;

189 190
    MSG("nRankPrimals = %d   nOverallPrimals = %d\n", 
	nRankPrimals, nOverallPrimals);
191

192 193 194 195 196

    // === Communicate primal's global index from ranks that own the     ===
    // === primals to ranks that contain this primals but are not owning ===
    // === them.                                                         ===

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (globalPrimalIndex.count(**dofIt))
	  stdMpi.getSendData(it->first).push_back(globalPrimalIndex[**dofIt]);
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank) 
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false)
	  globalPrimalIndex[**dofIt] = stdMpi.getRecvData(it->first)[i++];
      }
    }

    TEST_EXIT_DBG(primals.size() == globalPrimalIndex.size())
      ("Number of primals %d, but number of global primals on this rank is %d!\n",
       primals.size(), globalPrimalIndex.size());


    TEST_EXIT_DBG(nOverallPrimals > 0)
      ("There are zero primal nodes in domain!\n");
  }


  void PetscSolverFeti::createDuals()
  {
    FUNCNAME("PetscSolverFeti::createDuals()");
    
249 250
    // === Create for each dual node that is owned by the rank, the set ===
    // === of ranks that contain this node (denoted by W(x_j)).         ===
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    boundaryDofRanks.clear();

    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it) {
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	// If DOF is not primal, i.e., its a dual node
	if (primals.count(**dofIt) == 0) {
	  boundaryDofRanks[**dofIt].insert(mpiRank);
	  boundaryDofRanks[**dofIt].insert(it->first);
	}
      }
    }

267 268 269 270

    // === Communicate these sets for all rank owned dual nodes to other ===
    // === ranks that also have this node.                               ===

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    StdMpi<vector<std::set<int> > > stdMpi(meshDistributor->getMpiComm());
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0)
	  stdMpi.getSendData(it->first).push_back(boundaryDofRanks[**dofIt]);

    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank)
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)	
	if (primals.count(**dofIt) == 0)
	  boundaryDofRanks[**dofIt] = stdMpi.getRecvData(it->first)[i++];	      
    }


    // === Create global index of the dual nodes on each rank. ===

    duals.clear();
    globalDualIndex.clear();

    int nRankAllDofs = meshDistributor->getFeSpace()->getAdmin()->getUsedDofs();
    nRankB = nRankAllDofs - primals.size();
    nOverallB = 0;
    rStartB = 0;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankB, rStartB, nOverallB);
    DofContainer allBoundaryDofs;
    meshDistributor->getAllBoundaryDofs(allBoundaryDofs);
    int nRankInteriorDofs = nRankAllDofs - allBoundaryDofs.size();

    int nRankDuals = 0;
    for (DofContainer::iterator it = allBoundaryDofs.begin();
	 it != allBoundaryDofs.end(); ++it) {
      if (primals.count(**it) == 0) {
	duals.insert(**it);
	globalDualIndex[**it] = rStartB + nRankInteriorDofs + nRankDuals;
	nRankDuals++;
      }
    }

    int nOverallDuals = nRankDuals;
    mpi::globalAdd(nOverallDuals);

335 336
    MSG("nRankDuals = %d   nOverallDuals = %d\n",
	nRankDuals, nOverallDuals);
337 338 339 340 341 342 343
  }

  
  void PetscSolverFeti::createLagrange()
  {
    FUNCNAME("PetscSolverFeti::createLagrange()");

344 345 346
    // === Reserve for each dual node, on the rank that owns this node, the ===
    // === appropriate number of Lagrange constraints.                      ===

347 348 349 350 351 352 353 354 355
    nRankLagrange = 0;
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      if (meshDistributor->getIsRankDof(*it)) {
	dofFirstLagrange[*it] = nRankLagrange;
	int degree = boundaryDofRanks[*it].size();
	nRankLagrange += (degree * (degree - 1)) / 2;
      }
    }

356 357 358 359 360

    // === Get the overall number of Lagrange constraints and create the ===
    // === mapping dofFirstLagrange, that defines for each dual boundary ===
    // === node the first Lagrange constraint global index.              ===

361
    nOverallLagrange = 0;
362
    rStartLagrange = 0;
363 364 365 366 367 368 369
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankLagrange, rStartLagrange, nOverallLagrange);

    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it))
	dofFirstLagrange[*it] += rStartLagrange;

370 371
    MSG("nRankLagrange = %d  nOverallLagrange = %d\n",
	nRankLagrange, nOverallLagrange);
372 373


374
    // === Communicate dofFirstLagrange to all other ranks. ===
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) == 0) {
	  TEST_EXIT_DBG(dofFirstLagrange.count(**dofIt))("Should not happen!\n");
	  stdMpi.getSendData(it->first).push_back(dofFirstLagrange[**dofIt]);
	}
      }
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvData = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvData = true;
	  break;
	}
	  
      if (recvData)
	stdMpi.recv(it->first);
    }

    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int counter = 0;
      for (unsigned int i = 0; i < it->second.size(); i++)
	if (primals.count(*(it->second[i])) == 0)
	  dofFirstLagrange[*(it->second[i])] = stdMpi.getRecvData(it->first)[counter++];
412
    }     
413 414 415 416 417 418 419 420 421
  }


  void PetscSolverFeti::createIndexB()
  {
    FUNCNAME("PetscSolverFeti::createIndeB()");

    globalIndexB.clear();
    DOFAdmin* admin = meshDistributor->getFeSpace()->getAdmin();
422 423 424 425

    // === To ensure that all interior node on each rank are listen first in ===
    // === the global index of all B nodes, insert all interior nodes first, ===
    // === without defining a correct index.                                 ===
426 427 428 429 430 431
    
    for (int i = 0; i < admin->getUsedSize(); i++)
      if (admin->isDofFree(i) == false && primals.count(i) == 0)
	if (duals.count(i) == 0 && primals.count(i) == 0)
	  globalIndexB[i] = -1;

432 433 434

    // === Get correct index for all interior nodes. ===

435
    nLocalInterior = 0;
436 437
    for (DofMapping::iterator it = globalIndexB.begin(); 
	 it != globalIndexB.end(); ++it) {
438 439
      it->second = nLocalInterior + rStartB;
      nLocalInterior++;
440
    }
441
    nLocalBound = duals.size();
442

443
    TEST_EXIT_DBG(nLocalInterior + primals.size() + duals.size() == 
444 445 446
		  static_cast<unsigned int>(admin->getUsedDofs()))
      ("Should not happen!\n");

447 448 449

    // === And finally, add the global indicies of all dual nodes. ===

450 451 452
    for (DofIndexSet::iterator it = duals.begin();
	 it != duals.end(); ++it)
      globalIndexB[*it] = globalDualIndex[*it];
453 454 455
  }


456
  void PetscSolverFeti::createMatLagrange()
457 458 459
  {
    FUNCNAME("PetscSolverFeti::createMatLagrange()");

460 461
    // === Create distributed matrix for Lagrange constraints. ===

462
    MatCreateMPIAIJ(PETSC_COMM_WORLD,
463 464 465 466
		    nRankLagrange * nComponents, 
		    nRankB * nComponents,
		    nOverallLagrange * nComponents, 
		    nOverallB * nComponents,
467 468 469
		    2, PETSC_NULL, 2, PETSC_NULL,
		    &mat_lagrange);

470 471 472 473 474 475 476
    // === Create for all duals the corresponding Lagrange constraints. On ===
    // === each rank we traverse all pairs (n, m) of ranks, with n < m,    ===
    // === that contain this node. If the current rank number is r, and    ===
    // === n == r, the rank sets 1.0 for the corresponding constraint, if  ===
    // === m == r, than the rank sets -1.0 for the corresponding           ===
    // === constraint.                                                     ===

477 478 479 480
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      TEST_EXIT_DBG(dofFirstLagrange.count(*it))("Should not happen!\n");
      TEST_EXIT_DBG(boundaryDofRanks.count(*it))("Should not happen!\n");

481
      // Global index of the first Lagrange constriant for this node.
482
      int index = dofFirstLagrange[*it];
483
      // Copy set of all ranks that contain this dual node.
484
      vector<int> W(boundaryDofRanks[*it].begin(), boundaryDofRanks[*it].end());
485
      // Number of ranks that contain this dual node.
486 487 488 489 490 491 492
      int degree = W.size();

      TEST_EXIT_DBG(globalDualIndex.count(*it))("Should not happen!\n");
      int dualCol = globalDualIndex[*it];

      for (int i = 0; i < degree; i++) {
	for (int j = i + 1; j < degree; j++) {
493 494
	  if (W[i] == mpiRank || W[j] == mpiRank) {
	    // Set the constraint for all components of the system.
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	    for (int k = 0; k < nComponents; k++) {
	      int rowIndex = index * nComponents + k;
	      int colIndex = dualCol * nComponents + k;
	      double value = (W[i] == mpiRank ? 1.0 : -1.0);
	      MatSetValue(mat_lagrange, rowIndex, colIndex, value, 
			  INSERT_VALUES);
	    }
	  }

	  index++;
	}
      }
    }

    MatAssemblyBegin(mat_lagrange, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_lagrange, MAT_FINAL_ASSEMBLY);
  }


514
  void PetscSolverFeti::createSchurPrimalKsp()
515 516 517 518 519 520 521 522
  {
    FUNCNAME("PetscSolverFeti::createSchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = &mat_primal_primal;
    petscSchurPrimalData.mat_primal_b = &mat_primal_b;
    petscSchurPrimalData.mat_b_primal = &mat_b_primal;
    petscSchurPrimalData.ksp_b = &ksp_b;

523 524
    VecDuplicate(f_b, &(petscSchurPrimalData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscSchurPrimalData.tmp_vec_primal));
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

    MatCreateShell(PETSC_COMM_WORLD,
		   nRankPrimals * nComponents, nRankPrimals * nComponents,
		   nOverallPrimals * nComponents, nOverallPrimals * nComponents,
		   &petscSchurPrimalData, 
		   &mat_schur_primal);
    MatShellSetOperation(mat_schur_primal, MATOP_MULT, 
			 (void(*)(void))petscMultMatSchurPrimal);

    KSPCreate(PETSC_COMM_WORLD, &ksp_schur_primal);
    KSPSetOperators(ksp_schur_primal, mat_schur_primal, mat_schur_primal, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_schur_primal, "solver_sp_");
    KSPSetFromOptions(ksp_schur_primal);
  }


  void PetscSolverFeti::destroySchurPrimalKsp()
  {
    FUNCNAME("PetscSolverFeti::destroySchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = PETSC_NULL;
    petscSchurPrimalData.mat_primal_b = PETSC_NULL;
    petscSchurPrimalData.mat_b_primal = PETSC_NULL;
    petscSchurPrimalData.ksp_b = PETSC_NULL;

550 551
    VecDestroy(&petscSchurPrimalData.tmp_vec_b);
    VecDestroy(&petscSchurPrimalData.tmp_vec_primal);
552

553 554
    MatDestroy(&mat_schur_primal);
    KSPDestroy(&ksp_schur_primal);
555 556 557 558 559 560 561
  }


  void PetscSolverFeti::createFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::createFetiKsp()");

562 563
    // === Create FETI-DP solver object. ===

564 565 566 567 568 569 570 571
    petscFetiData.mat_primal_primal = &mat_primal_primal;
    petscFetiData.mat_primal_b = &mat_primal_b;
    petscFetiData.mat_b_primal = &mat_b_primal;
    petscFetiData.mat_lagrange = &mat_lagrange;
    petscFetiData.ksp_b = &ksp_b;
    petscFetiData.ksp_schur_primal = &ksp_schur_primal;


572 573
    VecDuplicate(f_b, &(petscFetiData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscFetiData.tmp_vec_primal));
574 575 576 577
    MatGetVecs(mat_lagrange, PETSC_NULL, &(petscFetiData.tmp_vec_lagrange));


    MatCreateShell(PETSC_COMM_WORLD,
578 579
		   nRankLagrange * nComponents, nRankLagrange * nComponents,
		   nOverallLagrange * nComponents, nOverallLagrange * nComponents,
580 581 582 583 584 585 586 587
		   &petscFetiData, &mat_feti);
    MatShellSetOperation(mat_feti, MATOP_MULT, (void(*)(void))petscMultMatFeti);


    KSPCreate(PETSC_COMM_WORLD, &ksp_feti);
    KSPSetOperators(ksp_feti, mat_feti, mat_feti, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_feti, "solver_feti_");
    KSPSetFromOptions(ksp_feti);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606


    // === Create FETI-DP Dirichlet preconditioner object. ===

    KSPCreate(PETSC_COMM_SELF, &ksp_interior);
    KSPSetOperators(ksp_interior, mat_interior_interior, mat_interior_interior, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_interior, "solver_interior_");
    KSPSetFromOptions(ksp_interior);

    
    MatDuplicate(mat_lagrange, MAT_COPY_VALUES, &mat_lagrange_scaled);
    MatScale(mat_lagrange_scaled, 0.5);

    petscFetiPreconData.mat_lagrange_scaled = &mat_lagrange_scaled;
    petscFetiPreconData.mat_interior_interior = &mat_interior_interior;
    petscFetiPreconData.mat_bound_bound = &mat_bound_bound;
    petscFetiPreconData.mat_interior_bound = &mat_interior_bound;
    petscFetiPreconData.mat_bound_interior = &mat_bound_interior;
    petscFetiPreconData.ksp_interior = &ksp_interior;
607 608
    petscFetiPreconData.nLocalInterior = nLocalInterior;
    petscFetiPreconData.nLocalBound = nLocalBound;
609 610 611 612 613 614 615 616 617 618 619

    VecDuplicate(f_b, &(petscFetiPreconData.tmp_vec_b));

    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound0));
    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound1));
    MatGetVecs(mat_interior_interior, PETSC_NULL, &(petscFetiPreconData.tmp_vec_interior));

    KSPGetPC(ksp_feti, &precon_feti);
    PCSetType(precon_feti, PCSHELL);
    PCShellSetContext(precon_feti, static_cast<void*>(&petscFetiPreconData));
    PCShellSetApply(precon_feti, petscApplyFetiPrecon);
620 621 622 623 624 625 626
  }
  

  void PetscSolverFeti::destroyFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::destroyFetiKsp()");

627 628
    // === Destroy FETI-DP solver object. ===

629 630 631 632 633 634 635
    petscFetiData.mat_primal_primal = PETSC_NULL;
    petscFetiData.mat_primal_b = PETSC_NULL;
    petscFetiData.mat_b_primal = PETSC_NULL;
    petscFetiData.mat_lagrange = PETSC_NULL;
    petscFetiData.ksp_b = PETSC_NULL;
    petscFetiData.ksp_schur_primal = PETSC_NULL;

636 637 638
    VecDestroy(&petscFetiData.tmp_vec_b);
    VecDestroy(&petscFetiData.tmp_vec_primal);
    VecDestroy(&petscFetiData.tmp_vec_lagrange);
639

640 641
    MatDestroy(&mat_feti);
    KSPDestroy(&ksp_feti);
642 643 644 645


    // === Destroy FETI-DP Dirichlet preconditioner object. ===

646
    KSPDestroy(&ksp_interior);
647 648 649 650 651 652 653 654

    petscFetiPreconData.mat_lagrange_scaled = NULL;
    petscFetiPreconData.mat_interior_interior = NULL;
    petscFetiPreconData.mat_bound_bound = NULL;
    petscFetiPreconData.mat_interior_bound = NULL;
    petscFetiPreconData.mat_bound_interior = NULL;
    petscFetiPreconData.ksp_interior = NULL;

655 656 657 658 659
    VecDestroy(&petscFetiPreconData.tmp_vec_b);
    VecDestroy(&petscFetiPreconData.tmp_vec_bound0);
    VecDestroy(&petscFetiPreconData.tmp_vec_bound1);
    VecDestroy(&petscFetiPreconData.tmp_vec_interior);
    MatDestroy(&mat_lagrange_scaled);
660 661 662 663 664 665 666 667 668
  }


  void PetscSolverFeti::recoverSolution(Vec &vec_sol_b,
					Vec &vec_sol_primal,
					SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::recoverSolution()");

669
    // === Get local part of the solution for B variables. ===
670 671 672 673 674

    PetscScalar *localSolB;
    VecGetArray(vec_sol_b, &localSolB);


675 676
    // === Create scatter to get solutions of all primal nodes that are ===
    // === contained in rank's domain.                                  ===
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    
    vector<PetscInt> globalIsIndex, localIsIndex;
    globalIsIndex.reserve(globalPrimalIndex.size() * nComponents);
    localIsIndex.reserve(globalPrimalIndex.size() * nComponents);

    {
      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	for (int i = 0; i < nComponents; i++) {
	  globalIsIndex.push_back(it->second * nComponents + i);
	  localIsIndex.push_back(counter++);
	}
      }
    }
    
    IS globalIs, localIs;
    ISCreateGeneral(PETSC_COMM_SELF, 
		    globalIsIndex.size(), 
		    &(globalIsIndex[0]),
		    PETSC_USE_POINTER,
		    &globalIs);

    ISCreateGeneral(PETSC_COMM_SELF, 
		    localIsIndex.size(), 
		    &(localIsIndex[0]),
		    PETSC_USE_POINTER,
		    &localIs);

    Vec local_sol_primal;
    VecCreateSeq(PETSC_COMM_SELF, localIsIndex.size(), &local_sol_primal);

    VecScatter primalScatter;
    VecScatterCreate(vec_sol_primal, globalIs, local_sol_primal, localIs, &primalScatter);
    VecScatterBegin(primalScatter, vec_sol_primal, local_sol_primal, 
		    INSERT_VALUES, SCATTER_FORWARD);
    VecScatterEnd(primalScatter, vec_sol_primal, local_sol_primal, 
		  INSERT_VALUES, SCATTER_FORWARD);

716 717 718
    ISDestroy(&globalIs);
    ISDestroy(&localIs);    
    VecScatterDestroy(&primalScatter);    
719 720 721 722 723

    PetscScalar *localSolPrimal;
    VecGetArray(local_sol_primal, &localSolPrimal);


724
    // === And copy from PETSc local vectors to the DOF vectors. ===
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>& dofVec = *(vec.getDOFVector(i));

      for (DofMapping::iterator it = globalIndexB.begin();
	   it != globalIndexB.end(); ++it) {
	int petscIndex = (it->second - rStartB) * nComponents + i;
	dofVec[it->first] = localSolB[petscIndex];
      }

      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	dofVec[it->first] = localSolPrimal[counter * nComponents + i];
	counter++;
      }
    }



    VecRestoreArray(vec_sol_b, &localSolB);
    VecRestoreArray(local_sol_primal, &localSolPrimal);
747
    VecDestroy(&local_sol_primal);
748 749 750
  }


751 752
  void PetscSolverFeti::fillPetscMatrix(Matrix<DOFMatrix*> *mat, 
					SystemVector *vec)
753 754
  {
    FUNCNAME("PetscSolverFeti::fillPetscMatrix()");   
755

756 757 758 759
    nComponents = vec->getSize();

    // === Create all sets and indices. ===

760 761
    updateDofData();

762 763 764 765 766 767 768

    // === Create matrices for the FETI-DP method. ===

    int nRowsRankB = nRankB * nComponents;
    int nRowsOverallB = nOverallB * nComponents;
    int nRowsRankPrimal = nRankPrimals * nComponents;
    int nRowsOverallPrimal = nOverallPrimals * nComponents;
769 770
    int nRowsInterior = nLocalInterior * nComponents;
    int nRowsBound = nLocalBound * nComponents;
771 772

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
773 774
		    nRowsRankB, nRowsRankB, nRowsOverallB, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_b);
775 776

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
777 778 779
		    nRowsRankPrimal, nRowsRankPrimal, 
		    nRowsOverallPrimal, nRowsOverallPrimal,
		    10, PETSC_NULL, 10, PETSC_NULL, &mat_primal_primal);
780 781

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
782 783 784
		    nRowsRankB, nRowsRankPrimal, 
		    nRowsOverallB, nRowsOverallPrimal,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_primal);
785 786

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
787 788 789 790
		    nRowsRankPrimal, nRowsRankB,
		    nRowsOverallPrimal, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_primal_b);

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

    // === Create matrices for Dirichlet FETI-DP preconditioner. ===

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsInterior, 100, PETSC_NULL,
		    &mat_interior_interior);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsBound, 100, PETSC_NULL,
		    &mat_bound_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsBound, 100, PETSC_NULL,
		    &mat_interior_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsInterior, 100, PETSC_NULL,
		    &mat_bound_interior);

810 811
    
    // === Prepare traverse of sequentially created matrices. ===
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    vector<int> cols, colsOther;
    vector<double> values, valuesOther;
    cols.reserve(300);
    colsOther.reserve(300);
    values.reserve(300);
    valuesOther.reserve(300);

827 828 829 830 831 832 833
    vector<int> colsLocal, colsLocalOther;
    vector<double> valuesLocal, valuesLocalOther;
    colsLocal.reserve(300);
    colsLocalOther.reserve(300);
    valuesLocal.reserve(300);
    valuesLocalOther.reserve(300);

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

    // === Traverse all sequentially created matrices and add the values to ===
    // === the global PETSc matrices.                                       ===

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
	if (!(*mat)[i][j])
	  continue;

	traits::col<Matrix>::type col((*mat)[i][j]->getBaseMatrix());
	traits::const_value<Matrix>::type value((*mat)[i][j]->getBaseMatrix());
	
	// Traverse all rows.
	for (cursor_type cursor = begin<row>((*mat)[i][j]->getBaseMatrix()), 
	       cend = end<row>((*mat)[i][j]->getBaseMatrix()); cursor != cend; ++cursor) {
849

850
	  bool rowPrimal = primals.count(*cursor) != 0;
851
  
852 853
	  cols.clear();
	  colsOther.clear();
854
	  values.clear();	  
855
	  valuesOther.clear();
856 857 858 859 860 861

	  colsLocal.clear();
	  colsLocalOther.clear();
	  valuesLocal.clear();
	  valuesLocalOther.clear();

862 863 864 865 866
	  
	  // Traverse all columns.
	  for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	       icursor != icend; ++icursor) {

867 868 869
	    bool colPrimal = primals.count(col(*icursor)) != 0;

	    if (colPrimal) {
870 871 872 873 874 875 876 877 878 879
	      // Column is a primal variable.

	      TEST_EXIT_DBG(globalPrimalIndex.count(col(*icursor)))
		("No global primal index for DOF %d!\n", col(*icursor));
	      
	      int colIndex = globalPrimalIndex[col(*icursor)] * nComponents + j;
	      
	      if (rowPrimal) {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
880
	      } else {
881 882 883 884 885 886 887 888
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      }
	    } else {
	      // Column is not a primal variable.

	      TEST_EXIT_DBG(globalIndexB.count(col(*icursor)))
		("No global B index for DOF %d!\n", col(*icursor));
889
	      
890 891 892 893 894 895 896 897
	      int colIndex = globalIndexB[col(*icursor)] * nComponents + j;

	      if (rowPrimal) {
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      } else {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
898 899
	      }
	    }
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940



	    // === For preconditioner ===

	    if (!rowPrimal && !colPrimal) {
	      int rowIndex = globalIndexB[*cursor] - rStartB;
	      int colIndex = globalIndexB[col(*icursor)] - rStartB;
		
	      if (rowIndex < nLocalInterior) {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		}
	      } else {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		}
	      }		
	    }


941
	  }
942

943 944 945
	  if (rowPrimal) {
	    TEST_EXIT_DBG(globalPrimalIndex.count(*cursor))
	      ("Should not happen!\n");
946

947 948 949
	    int rowIndex = globalPrimalIndex[*cursor] * nComponents + i;
	    MatSetValues(mat_primal_primal, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
950

951 952 953 954 955 956
	    if (colsOther.size())
	      MatSetValues(mat_primal_b, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  } else {
	    TEST_EXIT_DBG(globalIndexB.count(*cursor))
	      ("Should not happen!\n");
957

958 959 960
	    int rowIndex = globalIndexB[*cursor] * nComponents + i;
	    MatSetValues(mat_b_b, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
961

962 963 964 965
	    if (colsOther.size())
	      MatSetValues(mat_b_primal, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  }
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

	  // === For preconditioner ===

	  if (!rowPrimal) {
	    int rowIndex = globalIndexB[*cursor] - rStartB;

	    if (rowIndex < nLocalInterior) {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB) * nComponents + i;

	      MatSetValues(mat_interior_interior, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_interior_bound, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);
	    } else {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB - nLocalInterior) * nComponents + i;

	      MatSetValues(mat_bound_bound, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_bound_interior, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);

	    }
	  }


997 998 999 1000
	} 
      }
    }
    
1001

1002
    // === Start global assembly procedure. ===
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    MatAssemblyBegin(mat_b_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_b, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_b_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_b, MAT_FINAL_ASSEMBLY);
	  

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    MatAssemblyBegin(mat_interior_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_interior, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_interior_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_interior, MAT_FINAL_ASSEMBLY);


1030
    // === Create and fill PETSc's right hand side vectors. ===
1031

1032 1033 1034
    VecCreate(PETSC_COMM_WORLD, &f_b);
    VecSetSizes(f_b, nRankB * nComponents, nOverallB * nComponents);
    VecSetType(f_b, VECMPI);
1035

1036 1037
    VecCreate(PETSC_COMM_WORLD, &f_primal);
    VecSetSizes(f_primal, nRankPrimals * nComponents, 
1038
		nOverallPrimals * nComponents);
1039
    VecSetType(f_primal, VECMPI);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>::Iterator dofIt(vec->getDOFVector(i), USED_DOFS);
      for (dofIt.reset(); !dofIt.end(); ++dofIt) {
	int index = dofIt.getDOFIndex();
	if (primals.count(index)) {
	  TEST_EXIT_DBG(globalPrimalIndex.count(index))
	    ("Should not happen!\n");

	  index = globalPrimalIndex[index] * nComponents + i;
	  double value = *dofIt;
1051
	  VecSetValues(f_primal, 1, &index, &value, ADD_VALUES);
1052 1053 1054 1055 1056 1057
	} else {
	  TEST_EXIT_DBG(globalIndexB.count(index))
	    ("Should not happen!\n");

	  index = globalIndexB[index] * nComponents + i;
	  double value = *dofIt;
1058
	  VecSetValues(f_b, 1, &index, &value, ADD_VALUES);
1059 1060 1061 1062
	}      
      }
    }

1063 1064
    VecAssemblyBegin(f_b);
    VecAssemblyEnd(f_b);
1065

1066 1067
    VecAssemblyBegin(f_primal);
    VecAssemblyEnd(f_primal);
1068 1069


1070
    // === Create and fill PETSc matrix for Lagrange constraints. ===
1071

1072
    createMatLagrange();
1073 1074

    
1075 1076 1077 1078 1079 1080
    // === Create PETSc solver for the Schur complement on primal variables. ===
    
    createSchurPrimalKsp();


    // === Create PETSc solver for the FETI-DP operator. ===
1081 1082

    createFetiKsp();
1083 1084 1085
  }


1086
  void PetscSolverFeti::solveFetiMatrix(SystemVector &vec)
1087
  {
1088
    FUNCNAME("PetscSolverFeti::solveFetiMatrix()");
1089

1090 1091 1092
    // Create transpose of Lagrange matrix.
    Mat mat_lagrange_transpose;
    MatTranspose(mat_lagrange, MAT_INITIAL_MATRIX, &mat_lagrange_transpose);
1093 1094


1095
    // === Create nested matrix which will contain the overall FETI system. ===
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    Mat A;
    Mat nestedA[3][3];
    nestedA[0][0] = mat_b_b;
    nestedA[0][1] = mat_b_primal;
    nestedA[0][2] = mat_lagrange_transpose;
    nestedA[1][0] = mat_primal_b;
    nestedA[1][1] = mat_primal_primal;
    nestedA[1][2] = PETSC_NULL;
    nestedA[2][0] = mat_lagrange;
    nestedA[2][1] = PETSC_NULL;
    nestedA[2][2] = PETSC_NULL;
1108

1109
    MatCreateNest(PETSC_COMM_WORLD, 3, PETSC_NULL, 3, PETSC_NULL, &(nestedA[0][0]), &A);
1110

1111 1112 1113
    MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
  
1114 1115


1116 1117 1118
    int nRankNest = (nRankB + nRankPrimals + nRankLagrange) * nComponents;
    int nOverallNest = (nOverallB + nOverallPrimals + nOverallLagrange) * nComponents;
    int rStartNest = (rStartB + rStartPrimals + rStartLagrange) * nComponents;
1119

1120 1121
    {
      // === Test some matrix sizes. ===
1122

1123 1124 1125 1126 1127
      int matRow, matCol;
      MatGetLocalSize(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == nRankNest)("Should not happen!\n");
      mpi::globalAdd(matRow);
      TEST_EXIT_DBG(matRow == nOverallNest)("Should not happen!\n");
1128

1129 1130 1131
      MatGetOwnershipRange(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == rStartNest)("Should not happen!\n");
    }
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    // === Create rhs and solution vectors for the overall FETI system. ===

    Vec f;
    VecCreate(PETSC_COMM_WORLD, &f);
    VecSetSizes(f, nRankNest, nOverallNest);
    VecSetType(f, VECMPI);

    Vec b;
    VecDuplicate(f, &b);

    
    // === Fill rhs vector by coping the primal and non primal PETSc vectors. ===
1145

1146 1147
    PetscScalar *local_f_b;
    VecGetArray(f_b, &local_f_b);
1148

1149 1150
    PetscScalar *local_f_primal;
    VecGetArray(f_primal, &local_f_primal);
1151

1152 1153 1154 1155 1156 1157 1158
    {
      int size;
      VecGetLocalSize(f_b, &size);
      TEST_EXIT_DBG(size == nRankB * nComponents)("Should not happen!\n");
      VecGetLocalSize(f_primal, &size);
      TEST_EXIT_DBG(size == nRankPrimals * nComponents)("Should not happen!\n");
    }
1159

1160 1161
    PetscScalar *local_f;
    VecGetArray(f, &local_f);
1162

1163 1164 1165 1166 1167
    int index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_f[index++] = local_f_b[i];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_f[index++] = local_f_primal[i];
1168

1169 1170 1171
    VecRestoreArray(f, &local_f);  
    VecRestoreArray(f_b, &local_f_b);
    VecRestoreArray(f_primal, &local_f_primal);
1172

1173 1174
    
    // === Create solver and solve the overall FETI system. ===
1175

1176 1177 1178 1179
    KSP ksp;
    KSPCreate(PETSC_COMM_WORLD, &ksp);
    KSPSetOperators(ksp, A, A, SAME_NONZERO_PATTERN);
    KSPSetFromOptions(ksp);
1180 1181


1182
    KSPSolve(ksp, f, b);
1183 1184


1185 1186 1187 1188 1189
    // === Reconstruct FETI solution vectors. ===
    
    Vec u_b, u_primal;
    VecDuplicate(f_b, &u_b);
    VecDuplicate(f_primal, &u_primal);
1190 1191
    

1192 1193
    PetscScalar *local_b;
    VecGetArray(b, &local_b);
1194

1195 1196
    PetscScalar *local_u_b;
    VecGetArray(u_b, &local_u_b);
1197

1198 1199
    PetscScalar *local_u_primal;
    VecGetArray(u_primal, &local_u_primal);
1200

1201 1202 1203 1204 1205
    index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_u_b[i] = local_b[index++];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_u_primal[i] = local_b[index++];
1206

1207 1208 1209
    VecRestoreArray(f, &local_b);
    VecRestoreArray(u_b, &local_u_b);
    VecRestoreArray(u_primal, &local_u_primal);
1210

1211
    recoverSolution(u_b, u_primal, vec);
1212

1213 1214 1215 1216
    VecDestroy(&u_b);
    VecDestroy(&u_primal);
    VecDestroy(&b);
    VecDestroy(&f);
1217

1218
    KSPDestroy(&ksp);
1219
  }
1220 1221


1222 1223 1224
  void PetscSolverFeti::solveReducedFetiMatrix(SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::solveReducedFetiMatrix()");
1225

1226
    // === Create solver for the non primal (thus local) variables. ===