Element.h 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

// ============================================================================
// ===== includes =============================================================
// ============================================================================

#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"

namespace AMDiS {

  // ============================================================================
  // ===== forward declarations =================================================
  // ============================================================================

  class Mesh;
  class DOFAdmin;
  template<typename T> class WorldVector;
  class CoarseningManager;

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  // ============================================================================
  // ===== class Element ========================================================
  // ============================================================================

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
    /** \brief
     * private standard constructor because an Element must know his Mesh
     */
    Element() {};
  public:
    /** \brief
     * constructs an Element which belongs to Mesh
     */
    Element(Mesh *);

    /** \brief
     * copy constructor
     */
    Element(const Element& old);

    /** \brief
     * destructor
     */ 
    virtual ~Element();

104
105
106
107
108
109
    /** \brief
     * Clone this Element and return a reference to it. Because also the DOFs
     * are cloned, \ref Mesh::serializedDOfs must be used.
     */
    Element* cloneWithDOFs();

110
111
112
113
114
115
116
117
118
    // ===== getting methods ======================================================

    /** \name getting methods
     * \{
     */

    /** \brief
     * Returns \ref child[0]
     */
119
    inline Element* getFirstChild() const {
120
      return child[0];
121
    }
122
123
124
125

    /** \brief
     * Returns \ref child[1]
     */
126
    inline Element* getSecondChild() const {
127
      return child[1];
128
    }
129
130
131
132

    /** \brief
     * Returns \ref child[i], i=0,1
     */
133
    inline Element* getChild(int i) const {
134
      TEST_EXIT_DBG(i==0 || i==1)("i must be 0 or 1\n");
135
      return child[i];
136
    }
137
138
139
140
141

    /** \brief
     * Returns true if Element is a leaf element (\ref child[0] == NULL), returns
     * false otherwise.
     */
142
    inline const bool isLeaf() const { 
143
      return (child[0] == NULL); 
144
    }
145
146
147
148

    /** \brief
     * Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
     */
149
150
    const DegreeOfFreedom getDOF(int i, int j) const { 
      return dof[i][j];
151
    }
152
153
154
155

    /** \brief
     * Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
     */
156
157
    const DegreeOfFreedom* getDOF(int i) const {
      return dof[i];
158
    }
159
160
161
162
163
164

    /** \brief
     * Returns a pointer to the DOFs of this Element
     */
    const DegreeOfFreedom** getDOF() const {
      return const_cast<const DegreeOfFreedom**>(dof);
165
    }
166
167
168
169

    /** \brief
     * Returns \ref mesh of Element
     */
170
171
    inline Mesh* getMesh() const { 
      return mesh; 
172
    }
173
174
175
176
177
178
179

    /** \brief
     * Returns \ref elementData's error estimation, if Element is a leaf element
     * and has leaf data. 
     */
    inline double getEstimation(int row) const
    {
180
      if (isLeaf()) {
181
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
182
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
183
	TEST_EXIT_DBG(ld)("leaf data not estimatable!\n");
184

185
186
187
188
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
189
    }
190
191
192
193
194
195

    /** \brief
     * Returns Element's coarsening error estimation, if Element is a leaf 
     * element and if it has leaf data and if this leaf data are coarsenable.
     */
    inline double getCoarseningEstimation(int row) {
196
      if (isLeaf()) {
197
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
198
	ElementData *ld = elementData->getElementData(COARSENABLE);
199
	TEST_EXIT_DBG(ld)("element data not coarsenable!\n");
200

201
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
202
      }
203
204
      
      return 0.0;
205
    }
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    /** \brief
     * Returns region of element if defined, -1 else.
     */
    int getRegion() const;

    /** \brief
     * Returns local vertex number of the j-th vertex of the i-th edge
     */
    virtual int getVertexOfEdge(int i, int j) const = 0; 

    /** \brief
     * Returns local vertex number of the vertexIndex-th vertex of the
     * positionIndex-th part of type position (vertex, edge, face)
     */
    virtual int getVertexOfPosition(GeoIndex position,
222
223
				    int positionIndex,
				    int vertexIndex) const = 0;
224

225
226
227
    /** \brief
     *
     */
228
229
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

230
231
232
    /** \brief
     *
     */
233
234
235
236
237
238
239
240
241
242
243
244
    virtual int getEdgeOfFace(int face, int edge) const = 0;

    /** \brief
     * Returns the number of parts of type i in this element
     */
    virtual int getGeo(GeoIndex i) const = 0;

    /** \brief
     * Returns Element's \ref mark
     */
    inline const signed char getMark() const { 
      return mark;
245
    }
246
247
248
249
250
251
252
253
254
255
256

    /** \brief
     * Returns \ref newCoord[i]
     */
    double getNewCoord(int j) const;

    /** \brief
     * Returns Element's \ref index
     */
    inline int getIndex() const { 
      return index; 
257
    }
258
259
260
261
262
263

    /** \brief
     * Returns \ref newCoord
     */
    inline WorldVector<double>* getNewCoord() const { 
      return newCoord; 
264
    }
265
266
267
268
269
270
271
272
273
274
275
276

    /** \} */

    // ===== setting methods ======================================================

    /** \name setting methods
     * \{
     */

    /** \brief
     * Sets \ref child[0]
     */
277
278
    virtual void setFirstChild(Element *aChild) {
      child[0] = aChild;
279
    }
280
281
282
283

    /** \brief
     * Sets \ref child[1]
     */
284
285
    virtual void setSecondChild(Element *aChild) {
      child[1] = aChild;
286
    }
287
288
289
290

    /** \brief
     * Sets \ref elementData of Element
     */
291
292
    void setElementData(ElementData* ed) {
      elementData = ed;
293
    }
294
295
296
297
298

    /** \brief
     * Sets \ref newCoord of Element. Needed by refinement, if Element has a
     * boundary edge on a curved boundary.
     */
299
300
    inline void setNewCoord(WorldVector<double>* coord) {
      newCoord = coord;
301
    }
302
303
304
305

    /** \brief
     * Sets \ref mesh.
     */
306
307
    inline void setMesh(Mesh *m) {
      mesh = m;
308
    }
309
310
311
312

    /** \brief
     * Sets the pointer to the DOFs of the i-th node of Element
     */
313
314
315
    DegreeOfFreedom* setDOF(int pos, DegreeOfFreedom* p) {
      dof[pos] = p;
      return dof[pos];
316
    }
317
318
319
320
321
322
323

    /** \brief
     * Checks whether Element is a leaf element and whether it has leaf data.
     * If the checks don't fail, leaf data's error estimation is set to est.
     */
    inline void setEstimation(double est, int row)
    {
324
      if (isLeaf()) {
325
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
326
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
327
	TEST_EXIT_DBG(ld)("leaf data not estimatable\n");
328
329
330

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
331
      } else {
332
333
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
334
    }
335
336
337
338
339
340
341

    /** \brief
     * Sets Element's coarsening error estimation, if Element is a leaf element
     * and if it has leaf data and if this leaf data are coarsenable.
     */
    inline void setCoarseningEstimation(double est, int row)
    {
342
      if (isLeaf()) {
343
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
344
	ElementData *ld = elementData->getElementData(COARSENABLE);
345
	TEST_EXIT_DBG(ld)("leaf data not coarsenable\n");
346
347
348

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
349
      } else {
350
351
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
352
    }
353
354
355
356

    /** \brief
     * Sets Elements \ref mark = mark + 1;
     */
357
358
359
    inline void incrementMark() {
      mark++;
    }
360
361
362
363

    /** \brief
     * Sets Elements \ref mark = mark - 1;
     */
364
365
366
    inline void decrementMark() {
      if (0 < mark) 
	mark--;
367
    }
368
369
370
371

    /** \brief
     * Sets Element's \ref mark
     */
372
373
    inline void setMark(signed char m) {
      mark = m;
374
    }
375
376
377
378
379
380
381
382
383
384
385
386
387
388

    /** \} */

    // ===== pure virtual methods =================================================

    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
389
      sortFaceIndices(int face, FixVec<int,WORLD> *vec) const = 0;
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

    /** \brief
     * Returns a copy of itself. Needed by Mesh to create Elements by a
     * prototype. 
     */ 
    virtual Element *clone() = 0;

    /** \brief
     * Returns which side of child[childnr] corresponds to side sidenr of 
     * this Element. If the child has no corresponding
     * side, the return value is negative. *isBisected is true after the
     * function call, if the side of the child is only a part of element's 
     * side, false otherwise. 
     */
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

    /** \brief
     * Returns which vertex of elements parent corresponds to the vertexnr of
     * the element, if the element is the childnr-th child of the parent.
     * If the vertex is the ner vertex at the refinement edge, -1 is returned.
     */
    virtual int getVertexOfParent(int childnr, int vertexnr, int elType = 0) const = 0;

    /** \brief
     * Returns whether Element is a Line
     */
    virtual bool isLine() const = 0;

    /** \brief
     * Returns whether Element is a Triangle
     */
    virtual bool isTriangle() const = 0;

    /** \brief
     * Returns whether Element is a Tetrahedron
     */
    virtual bool isTetrahedron() const = 0;

    /** \brief
     * Returns whether Element has sideElem as one of its sides.
     */
    virtual bool hasSide(Element *sideElem) const = 0;

    /** \} */

    // ===== other public methods =================================================

    /** \brief
     * assignment operator
     */
440
    Element& operator=(const Element& el);
441
442
443
444
445
446
447
448
449
450

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

    /** \brief
     * Refines Element's leaf data
     */
451
452
453
454
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) {
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
455
456
457
458
459
	  ElementData *tmp = elementData->getDecorated();
	  DELETE elementData;
	  elementData = tmp;
	}
      }
460
    }
461
462
463
464
465
466
467

    /** \brief
     * Coarsens Element's leaf data
     */
    inline void coarsenElementData(Element* child1, Element* child2, int elType=0) {
      ElementData *childData;
      childData = child1->getElementData();
468
      if (childData) {
469
470
471
472
473
	childData->coarsenElementData(this, child1, child2, elType);
	DELETE childData;
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
474
      if (childData) {
475
476
477
478
	childData->coarsenElementData(this, child2, child1, elType);
	DELETE childData;
	child2->setElementData(NULL);
      }
479
    }
480
481
482
483
484
485

    /** \brief
     * Returns pointer to \ref elementData
     */
    inline ElementData* getElementData() const {
      return elementData;
486
    }
487

488
489
490
    /** \brief
     *
     */
491
    inline ElementData* getElementData(int typeID) const {
492
      if (elementData) {
493
494
495
	return elementData->getElementData(typeID);
      }
      return NULL;
496
    }
497
498
499
500
501
502

    /** \brief
     * kills \ref elementData
     */
    bool deleteElementData(int typeID) {
      FUNCNAME("Element::deleteElementData()");
503
504
      if (elementData) {
	if (elementData->isOfType(typeID)) {
505
506
507
508
509
510
511
512
513
	  ElementData *tmp = elementData;
	  elementData = elementData->getDecorated();
	  DELETE tmp;
	  return true;
	} else {
	  return elementData->deleteDecorated(typeID);
	}
      }
      return false;
514
    }
515
516
517
518
519
520
521
522

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
523
			 unsigned char elementTyp = 255);
524
525
526
527

    /** \brief
     * Returns whether Element's \ref newCoord is set
     */
528
529
    inline bool isNewCoordSet() const { 
      return (newCoord != NULL);
530
    }
531
532
533
534
535
536
537
538

    /** \brief
     * Frees memory for \ref newCoord
     */
    void eraseNewCoord();

    // ===== Serializable implementation =====
  
539
    void serialize(std::ostream &out);
540

541
    void deserialize(std::istream &in);
542

543
544
    int calcMemoryUsage();

545
546
547
548
549
550
551
552
553
554
    // ===== protected methods ====================================================
  protected:
    /** \brief
     * Sets Element's \ref dof pointer. Used by friend class Mesh.
     */
    void setDOFPtrs();
  
    /** \brief
     * Sets Element's \ref index. Used by friend class Mesh.
     */
555
556
    inline void setIndex(int i) {
      index = i;
557
    }
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct1(const DOFAdmin*);

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct2(const DOFAdmin*);

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
574
    Element *child[2];
575
576
577
578
579

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
580
581
582
     * ordered the following way: The first N_VERTICES entries correspond to the
     * DOFs at the vertices of the element. The next ones are those at the edges,
     * if present, then those at the faces, if present, and then those at the 
583
584
     * barycenter, if present.
     */
585
    DegreeOfFreedom **dof;
586
587
588
589
590
591

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
592
    int index;
593
594
595
596
597
598

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
599
    signed char mark;
600
601
602
603
604
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
605
606
     * information can be also produced by the traversal routines in the case of 
     * curved boundary.
607
608
609
610
611
612
     */
    WorldVector<double> *newCoord;

    /** \brief
     * Pointer to the Mesh this element belongs to
     */
613
    Mesh* mesh;
614
615
616
617

    /** \brief
     * Pointer to Element's leaf data
     */
618
    ElementData* elementData;
619
620
621
622
623
624
625
626
627
628



    friend class Mesh;
  };

}

#endif  // AMDIS_ELEMENT_H