PetscSolverFeti.cc 40.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


#include "parallel/PetscSolverFeti.h"
#include "parallel/StdMpi.h"
#include "parallel/MpiHelper.h"

namespace AMDiS {

  using namespace std;


#ifdef HAVE_PETSC_DEV 
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  // y = mat * x
  int petscMultMatSchurPrimal(Mat mat, Vec x, Vec y)
  {
    // S_PiPi = K_PiPi - K_PiB inv(K_BB) K_BPi

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscSchurPrimalData* data = static_cast<PetscSchurPrimalData*>(ctx);

    MatMult(*(data->mat_b_primal), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);

    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    MatMult(*(data->mat_primal_primal), x, y);
    VecAXPBY(y, -1.0, 1.0, data->tmp_vec_primal);

    return 0;
  }


  // y = mat * x
  int petscMultMatFeti(Mat mat, Vec x, Vec y)
  {
    // F = L inv(K_BB) trans(L) + L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)

    void *ctx;
    MatShellGetContext(mat, &ctx);
    PetscFetiData* data = static_cast<PetscFetiData*>(ctx);

    // y = L inv(K_BB) trans(L) x
    MatMultTranspose(*(data->mat_lagrange), x, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, y);

    // tmp_vec_primal = inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_primal_b), data->tmp_vec_b, data->tmp_vec_primal);
    KSPSolve(*(data->ksp_schur_primal), data->tmp_vec_primal, data->tmp_vec_primal);

    // tmp_vec_lagrange = L inv(K_BB) K_BPi tmp_vec_primal
    //                  = L inv(K_BB) K_BPi inv(S_PiPi) K_PiB inv(K_BB) trans(L)
    MatMult(*(data->mat_b_primal), data->tmp_vec_primal, data->tmp_vec_b);
    KSPSolve(*(data->ksp_b), data->tmp_vec_b, data->tmp_vec_b);
    MatMult(*(data->mat_lagrange), data->tmp_vec_b, data->tmp_vec_lagrange);

    VecAXPBY(y, 1.0, 1.0, data->tmp_vec_lagrange);

    return 0;
  }


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  // y = PC * x
  PetscErrorCode petscApplyFetiPrecon(PC pc, Vec x, Vec y)
  {
    void *ctx;
    PCShellGetContext(pc, &ctx);
    PetscFetiPreconData* data = static_cast<PetscFetiPreconData*>(ctx);

    MatMultTranspose(*(data->mat_lagrange_scaled), x, data->tmp_vec_b);

    int sizeB;
    int sizeBound;
    VecGetLocalSize(data->tmp_vec_b, &sizeB);
    VecGetLocalSize(data->tmp_vec_bound0, &sizeBound);

    PetscScalar *local_b;
    VecGetArray(data->tmp_vec_b, &local_b);

    PetscScalar *local_bound;
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_bound[j] = local_b[i];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);



    MatMult(*(data->mat_bound_bound), data->tmp_vec_bound0, data->tmp_vec_bound1);

    MatMult(*(data->mat_interior_bound), data->tmp_vec_bound0, data->tmp_vec_interior);
    KSPSolve(*(data->ksp_interior), data->tmp_vec_interior, data->tmp_vec_interior);
    MatMult(*(data->mat_bound_interior), data->tmp_vec_interior, data->tmp_vec_bound0);

    VecAXPBY(data->tmp_vec_bound0, 1.0, -1.0, data->tmp_vec_bound1);



    VecGetArray(data->tmp_vec_b, &local_b);
    VecGetArray(data->tmp_vec_bound0, &local_bound);

    for (int i = sizeB - sizeBound, j = 0; i < sizeB; i++, j++)
      local_b[i] = local_bound[j];

    VecRestoreArray(data->tmp_vec_b, &local_b);
    VecRestoreArray(data->tmp_vec_bound0, &local_bound);




    MatMult(*(data->mat_lagrange_scaled), data->tmp_vec_b, y);

    return 0;
  }


129
  void PetscSolverFeti::updateDofData()
130
131
  {
    FUNCNAME("PetscSolverFeti::updateDofData()");
132
133
134
135
136
137

    TEST_EXIT(meshDistributor->getMesh()->getDim() == 2)
      ("Works for 2D problems only!");

    TEST_EXIT(meshDistributor->getFeSpace()->getBasisFcts()->getDegree() == 1)
      ("Works for linear basis functions only!\n");
138
   
139
140
141
142
143
144
145
    createPrimals();

    createDuals();

    createLagrange();

    createIndexB();
146
147
148
  }


149
  void PetscSolverFeti::createPrimals()
150
  {
151
    FUNCNAME("PetscSolverFeti::createPrimals()");  
152

153
154
155
    // === Define all vertices on the interior boundaries of the macro mesh ===
    // === to be primal variables.                                          ===

156
157
158
159
160
161
162
    primals.clear();
    DofContainerSet& vertices = 
      meshDistributor->getBoundaryDofInfo().geoDofs[VERTEX];
    TEST_EXIT_DBG(vertices.size())("No primal vertices on this rank!\n");
    for (DofContainerSet::iterator it = vertices.begin(); 
	 it != vertices.end(); ++it)
      primals.insert(**it);
163

164
165
166
167

    // === Calculate the number of primals that are owned by the rank and ===
    // === create local indices of the primals starting at zero.          ===

168
    globalPrimalIndex.clear();
169
170
171
172
    nRankPrimals = 0;
    for (DofIndexSet::iterator it = primals.begin(); it != primals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it)) {
	globalPrimalIndex[*it] = nRankPrimals;
173
174
175
	nRankPrimals++;
      }

176

177
178
179
    // === Get overall number of primals and rank's displacement in the ===
    // === numbering of the primals.                                    ===

180
    nOverallPrimals = 0;
181
    rStartPrimals = 0;
182
183
184
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankPrimals, rStartPrimals, nOverallPrimals);

185
186
187

    // === Create global primal index for all primals. ===

188
189
190
191
192
193
    for (DofMapping::iterator it = globalPrimalIndex.begin();
	 it != globalPrimalIndex.end(); ++it)
      it->second += rStartPrimals;

    MSG_DBG("nRankPrimals = %d   nOverallPrimals = %d\n",
	    nRankPrimals, nOverallPrimals);
194

195
196
197
198
199

    // === Communicate primal's global index from ranks that own the     ===
    // === primals to ranks that contain this primals but are not owning ===
    // === them.                                                         ===

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (globalPrimalIndex.count(**dofIt))
	  stdMpi.getSendData(it->first).push_back(globalPrimalIndex[**dofIt]);
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank) 
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) && 
	    meshDistributor->getIsRankDof(**dofIt) == false)
	  globalPrimalIndex[**dofIt] = stdMpi.getRecvData(it->first)[i++];
      }
    }

    TEST_EXIT_DBG(primals.size() == globalPrimalIndex.size())
      ("Number of primals %d, but number of global primals on this rank is %d!\n",
       primals.size(), globalPrimalIndex.size());


    TEST_EXIT_DBG(nOverallPrimals > 0)
      ("There are zero primal nodes in domain!\n");
  }


  void PetscSolverFeti::createDuals()
  {
    FUNCNAME("PetscSolverFeti::createDuals()");
    
252
253
    // === Create for each dual node that is owned by the rank, the set ===
    // === of ranks that contain this node (denoted by W(x_j)).         ===
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    boundaryDofRanks.clear();

    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it) {
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	// If DOF is not primal, i.e., its a dual node
	if (primals.count(**dofIt) == 0) {
	  boundaryDofRanks[**dofIt].insert(mpiRank);
	  boundaryDofRanks[**dofIt].insert(it->first);
	}
      }
    }

270
271
272
273

    // === Communicate these sets for all rank owned dual nodes to other ===
    // === ranks that also have this node.                               ===

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    StdMpi<vector<std::set<int> > > stdMpi(meshDistributor->getMpiComm());
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0)
	  stdMpi.getSendData(it->first).push_back(boundaryDofRanks[**dofIt]);

    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvFromRank = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvFromRank = true;
	  break;
	}

      if (recvFromRank)
	stdMpi.recv(it->first);
    }
    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int i = 0;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)	
	if (primals.count(**dofIt) == 0)
	  boundaryDofRanks[**dofIt] = stdMpi.getRecvData(it->first)[i++];	      
    }


    // === Create global index of the dual nodes on each rank. ===

    duals.clear();
    globalDualIndex.clear();

    int nRankAllDofs = meshDistributor->getFeSpace()->getAdmin()->getUsedDofs();
    nRankB = nRankAllDofs - primals.size();
    nOverallB = 0;
    rStartB = 0;
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankB, rStartB, nOverallB);
    DofContainer allBoundaryDofs;
    meshDistributor->getAllBoundaryDofs(allBoundaryDofs);
    int nRankInteriorDofs = nRankAllDofs - allBoundaryDofs.size();

    int nRankDuals = 0;
    for (DofContainer::iterator it = allBoundaryDofs.begin();
	 it != allBoundaryDofs.end(); ++it) {
      if (primals.count(**it) == 0) {
	duals.insert(**it);
	globalDualIndex[**it] = rStartB + nRankInteriorDofs + nRankDuals;
	nRankDuals++;
      }
    }

    int nOverallDuals = nRankDuals;
    mpi::globalAdd(nOverallDuals);

    MSG_DBG("nRankDuals = %d   nOverallDuals = %d\n",
	    nRankDuals, nOverallDuals);
  }

  
  void PetscSolverFeti::createLagrange()
  {
    FUNCNAME("PetscSolverFeti::createLagrange()");

347
348
349
    // === Reserve for each dual node, on the rank that owns this node, the ===
    // === appropriate number of Lagrange constraints.                      ===

350
351
352
353
354
355
356
357
358
    nRankLagrange = 0;
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      if (meshDistributor->getIsRankDof(*it)) {
	dofFirstLagrange[*it] = nRankLagrange;
	int degree = boundaryDofRanks[*it].size();
	nRankLagrange += (degree * (degree - 1)) / 2;
      }
    }

359
360
361
362
363

    // === Get the overall number of Lagrange constraints and create the ===
    // === mapping dofFirstLagrange, that defines for each dual boundary ===
    // === node the first Lagrange constraint global index.              ===

364
    nOverallLagrange = 0;
365
    rStartLagrange = 0;
366
367
368
369
370
371
372
373
374
375
376
    mpi::getDofNumbering(meshDistributor->getMpiComm(),
			 nRankLagrange, rStartLagrange, nOverallLagrange);

    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it)
      if (meshDistributor->getIsRankDof(*it))
	dofFirstLagrange[*it] += rStartLagrange;

    MSG_DBG("nRankLagrange = %d  nOverallLagrange = %d\n",
	    nRankLagrange, nOverallLagrange);


377
    // === Communicate dofFirstLagrange to all other ranks. ===
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

    StdMpi<vector<int> > stdMpi(meshDistributor->getMpiComm());
    RankToDofContainer& sendDofs = meshDistributor->getSendDofs();
    for (RankToDofContainer::iterator it = sendDofs.begin();
	 it != sendDofs.end(); ++it)
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt) {
	if (primals.count(**dofIt) == 0) {
	  TEST_EXIT_DBG(dofFirstLagrange.count(**dofIt))("Should not happen!\n");
	  stdMpi.getSendData(it->first).push_back(dofFirstLagrange[**dofIt]);
	}
      }
    stdMpi.updateSendDataSize();

    RankToDofContainer& recvDofs = meshDistributor->getRecvDofs();
    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      bool recvData = false;
      for (DofContainer::iterator dofIt = it->second.begin();
	   dofIt != it->second.end(); ++dofIt)
	if (primals.count(**dofIt) == 0) {
	  recvData = true;
	  break;
	}
	  
      if (recvData)
	stdMpi.recv(it->first);
    }

    stdMpi.startCommunication();

    for (RankToDofContainer::iterator it = recvDofs.begin();
	 it != recvDofs.end(); ++it) {
      int counter = 0;
      for (unsigned int i = 0; i < it->second.size(); i++)
	if (primals.count(*(it->second[i])) == 0)
	  dofFirstLagrange[*(it->second[i])] = stdMpi.getRecvData(it->first)[counter++];
415
    }     
416
417
418
419
420
421
422
423
424
  }


  void PetscSolverFeti::createIndexB()
  {
    FUNCNAME("PetscSolverFeti::createIndeB()");

    globalIndexB.clear();
    DOFAdmin* admin = meshDistributor->getFeSpace()->getAdmin();
425
426
427
428

    // === To ensure that all interior node on each rank are listen first in ===
    // === the global index of all B nodes, insert all interior nodes first, ===
    // === without defining a correct index.                                 ===
429
430
431
432
433
434
    
    for (int i = 0; i < admin->getUsedSize(); i++)
      if (admin->isDofFree(i) == false && primals.count(i) == 0)
	if (duals.count(i) == 0 && primals.count(i) == 0)
	  globalIndexB[i] = -1;

435
436
437

    // === Get correct index for all interior nodes. ===

438
    nLocalInterior = 0;
439
440
    for (DofMapping::iterator it = globalIndexB.begin(); 
	 it != globalIndexB.end(); ++it) {
441
442
      it->second = nLocalInterior + rStartB;
      nLocalInterior++;
443
    }
444
    nLocalBound = duals.size();
445

446
    TEST_EXIT_DBG(nLocalInterior + primals.size() + duals.size() == 
447
448
449
		  static_cast<unsigned int>(admin->getUsedDofs()))
      ("Should not happen!\n");

450
451
452

    // === And finally, add the global indicies of all dual nodes. ===

453
454
455
    for (DofIndexSet::iterator it = duals.begin();
	 it != duals.end(); ++it)
      globalIndexB[*it] = globalDualIndex[*it];
456
457
458
  }


459
  void PetscSolverFeti::createMatLagrange()
460
461
462
  {
    FUNCNAME("PetscSolverFeti::createMatLagrange()");

463
464
    // === Create distributed matrix for Lagrange constraints. ===

465
    MatCreateMPIAIJ(PETSC_COMM_WORLD,
466
467
468
469
		    nRankLagrange * nComponents, 
		    nRankB * nComponents,
		    nOverallLagrange * nComponents, 
		    nOverallB * nComponents,
470
471
472
		    2, PETSC_NULL, 2, PETSC_NULL,
		    &mat_lagrange);

473
474
475
476
477
478
479
    // === Create for all duals the corresponding Lagrange constraints. On ===
    // === each rank we traverse all pairs (n, m) of ranks, with n < m,    ===
    // === that contain this node. If the current rank number is r, and    ===
    // === n == r, the rank sets 1.0 for the corresponding constraint, if  ===
    // === m == r, than the rank sets -1.0 for the corresponding           ===
    // === constraint.                                                     ===

480
481
482
483
    for (DofIndexSet::iterator it = duals.begin(); it != duals.end(); ++it) {
      TEST_EXIT_DBG(dofFirstLagrange.count(*it))("Should not happen!\n");
      TEST_EXIT_DBG(boundaryDofRanks.count(*it))("Should not happen!\n");

484
      // Global index of the first Lagrange constriant for this node.
485
      int index = dofFirstLagrange[*it];
486
      // Copy set of all ranks that contain this dual node.
487
      vector<int> W(boundaryDofRanks[*it].begin(), boundaryDofRanks[*it].end());
488
      // Number of ranks that contain this dual node.
489
490
491
492
493
494
495
      int degree = W.size();

      TEST_EXIT_DBG(globalDualIndex.count(*it))("Should not happen!\n");
      int dualCol = globalDualIndex[*it];

      for (int i = 0; i < degree; i++) {
	for (int j = i + 1; j < degree; j++) {
496
497
	  if (W[i] == mpiRank || W[j] == mpiRank) {
	    // Set the constraint for all components of the system.
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
	    for (int k = 0; k < nComponents; k++) {
	      int rowIndex = index * nComponents + k;
	      int colIndex = dualCol * nComponents + k;
	      double value = (W[i] == mpiRank ? 1.0 : -1.0);
	      MatSetValue(mat_lagrange, rowIndex, colIndex, value, 
			  INSERT_VALUES);
	    }
	  }

	  index++;
	}
      }
    }

    MatAssemblyBegin(mat_lagrange, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_lagrange, MAT_FINAL_ASSEMBLY);
  }


517
  void PetscSolverFeti::createSchurPrimalKsp()
518
519
520
521
522
523
524
525
  {
    FUNCNAME("PetscSolverFeti::createSchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = &mat_primal_primal;
    petscSchurPrimalData.mat_primal_b = &mat_primal_b;
    petscSchurPrimalData.mat_b_primal = &mat_b_primal;
    petscSchurPrimalData.ksp_b = &ksp_b;

526
527
    VecDuplicate(f_b, &(petscSchurPrimalData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscSchurPrimalData.tmp_vec_primal));
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    MatCreateShell(PETSC_COMM_WORLD,
		   nRankPrimals * nComponents, nRankPrimals * nComponents,
		   nOverallPrimals * nComponents, nOverallPrimals * nComponents,
		   &petscSchurPrimalData, 
		   &mat_schur_primal);
    MatShellSetOperation(mat_schur_primal, MATOP_MULT, 
			 (void(*)(void))petscMultMatSchurPrimal);

    KSPCreate(PETSC_COMM_WORLD, &ksp_schur_primal);
    KSPSetOperators(ksp_schur_primal, mat_schur_primal, mat_schur_primal, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_schur_primal, "solver_sp_");
    KSPSetFromOptions(ksp_schur_primal);
  }


  void PetscSolverFeti::destroySchurPrimalKsp()
  {
    FUNCNAME("PetscSolverFeti::destroySchurPrimal()");

    petscSchurPrimalData.mat_primal_primal = PETSC_NULL;
    petscSchurPrimalData.mat_primal_b = PETSC_NULL;
    petscSchurPrimalData.mat_b_primal = PETSC_NULL;
    petscSchurPrimalData.ksp_b = PETSC_NULL;

    VecDestroy(petscSchurPrimalData.tmp_vec_b);
    VecDestroy(petscSchurPrimalData.tmp_vec_primal);

    MatDestroy(mat_schur_primal);
    KSPDestroy(ksp_schur_primal);
  }


  void PetscSolverFeti::createFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::createFetiKsp()");

565
566
    // === Create FETI-DP solver object. ===

567
568
569
570
571
572
573
574
    petscFetiData.mat_primal_primal = &mat_primal_primal;
    petscFetiData.mat_primal_b = &mat_primal_b;
    petscFetiData.mat_b_primal = &mat_b_primal;
    petscFetiData.mat_lagrange = &mat_lagrange;
    petscFetiData.ksp_b = &ksp_b;
    petscFetiData.ksp_schur_primal = &ksp_schur_primal;


575
576
    VecDuplicate(f_b, &(petscFetiData.tmp_vec_b));
    VecDuplicate(f_primal, &(petscFetiData.tmp_vec_primal));
577
578
579
580
    MatGetVecs(mat_lagrange, PETSC_NULL, &(petscFetiData.tmp_vec_lagrange));


    MatCreateShell(PETSC_COMM_WORLD,
581
582
		   nRankLagrange * nComponents, nRankLagrange * nComponents,
		   nOverallLagrange * nComponents, nOverallLagrange * nComponents,
583
584
585
586
587
588
589
590
		   &petscFetiData, &mat_feti);
    MatShellSetOperation(mat_feti, MATOP_MULT, (void(*)(void))petscMultMatFeti);


    KSPCreate(PETSC_COMM_WORLD, &ksp_feti);
    KSPSetOperators(ksp_feti, mat_feti, mat_feti, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_feti, "solver_feti_");
    KSPSetFromOptions(ksp_feti);
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609


    // === Create FETI-DP Dirichlet preconditioner object. ===

    KSPCreate(PETSC_COMM_SELF, &ksp_interior);
    KSPSetOperators(ksp_interior, mat_interior_interior, mat_interior_interior, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_interior, "solver_interior_");
    KSPSetFromOptions(ksp_interior);

    
    MatDuplicate(mat_lagrange, MAT_COPY_VALUES, &mat_lagrange_scaled);
    MatScale(mat_lagrange_scaled, 0.5);

    petscFetiPreconData.mat_lagrange_scaled = &mat_lagrange_scaled;
    petscFetiPreconData.mat_interior_interior = &mat_interior_interior;
    petscFetiPreconData.mat_bound_bound = &mat_bound_bound;
    petscFetiPreconData.mat_interior_bound = &mat_interior_bound;
    petscFetiPreconData.mat_bound_interior = &mat_bound_interior;
    petscFetiPreconData.ksp_interior = &ksp_interior;
610
611
    petscFetiPreconData.nLocalInterior = nLocalInterior;
    petscFetiPreconData.nLocalBound = nLocalBound;
612
613
614
615
616
617
618
619
620
621
622

    VecDuplicate(f_b, &(petscFetiPreconData.tmp_vec_b));

    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound0));
    MatGetVecs(mat_bound_bound, PETSC_NULL, &(petscFetiPreconData.tmp_vec_bound1));
    MatGetVecs(mat_interior_interior, PETSC_NULL, &(petscFetiPreconData.tmp_vec_interior));

    KSPGetPC(ksp_feti, &precon_feti);
    PCSetType(precon_feti, PCSHELL);
    PCShellSetContext(precon_feti, static_cast<void*>(&petscFetiPreconData));
    PCShellSetApply(precon_feti, petscApplyFetiPrecon);
623
624
625
626
627
628
629
  }
  

  void PetscSolverFeti::destroyFetiKsp()
  {
    FUNCNAME("PetscSolverFeti::destroyFetiKsp()");

630
631
    // === Destroy FETI-DP solver object. ===

632
633
634
635
636
637
638
639
640
641
642
643
644
    petscFetiData.mat_primal_primal = PETSC_NULL;
    petscFetiData.mat_primal_b = PETSC_NULL;
    petscFetiData.mat_b_primal = PETSC_NULL;
    petscFetiData.mat_lagrange = PETSC_NULL;
    petscFetiData.ksp_b = PETSC_NULL;
    petscFetiData.ksp_schur_primal = PETSC_NULL;

    VecDestroy(petscFetiData.tmp_vec_b);
    VecDestroy(petscFetiData.tmp_vec_primal);
    VecDestroy(petscFetiData.tmp_vec_lagrange);

    MatDestroy(mat_feti);
    KSPDestroy(ksp_feti);
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662


    // === Destroy FETI-DP Dirichlet preconditioner object. ===

    KSPDestroy(ksp_interior);

    petscFetiPreconData.mat_lagrange_scaled = NULL;
    petscFetiPreconData.mat_interior_interior = NULL;
    petscFetiPreconData.mat_bound_bound = NULL;
    petscFetiPreconData.mat_interior_bound = NULL;
    petscFetiPreconData.mat_bound_interior = NULL;
    petscFetiPreconData.ksp_interior = NULL;

    VecDestroy(petscFetiPreconData.tmp_vec_b);
    VecDestroy(petscFetiPreconData.tmp_vec_bound0);
    VecDestroy(petscFetiPreconData.tmp_vec_bound1);
    VecDestroy(petscFetiPreconData.tmp_vec_interior);
    MatDestroy(mat_lagrange_scaled);
663
664
665
666
667
668
669
670
671
  }


  void PetscSolverFeti::recoverSolution(Vec &vec_sol_b,
					Vec &vec_sol_primal,
					SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::recoverSolution()");

672
    // === Get local part of the solution for B variables. ===
673
674
675
676
677

    PetscScalar *localSolB;
    VecGetArray(vec_sol_b, &localSolB);


678
679
    // === Create scatter to get solutions of all primal nodes that are ===
    // === contained in rank's domain.                                  ===
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    
    vector<PetscInt> globalIsIndex, localIsIndex;
    globalIsIndex.reserve(globalPrimalIndex.size() * nComponents);
    localIsIndex.reserve(globalPrimalIndex.size() * nComponents);

    {
      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	for (int i = 0; i < nComponents; i++) {
	  globalIsIndex.push_back(it->second * nComponents + i);
	  localIsIndex.push_back(counter++);
	}
      }
    }
    
    IS globalIs, localIs;
    ISCreateGeneral(PETSC_COMM_SELF, 
		    globalIsIndex.size(), 
		    &(globalIsIndex[0]),
		    PETSC_USE_POINTER,
		    &globalIs);

    ISCreateGeneral(PETSC_COMM_SELF, 
		    localIsIndex.size(), 
		    &(localIsIndex[0]),
		    PETSC_USE_POINTER,
		    &localIs);

    Vec local_sol_primal;
    VecCreateSeq(PETSC_COMM_SELF, localIsIndex.size(), &local_sol_primal);

    VecScatter primalScatter;
    VecScatterCreate(vec_sol_primal, globalIs, local_sol_primal, localIs, &primalScatter);
    VecScatterBegin(primalScatter, vec_sol_primal, local_sol_primal, 
		    INSERT_VALUES, SCATTER_FORWARD);
    VecScatterEnd(primalScatter, vec_sol_primal, local_sol_primal, 
		  INSERT_VALUES, SCATTER_FORWARD);

    ISDestroy(globalIs);
    ISDestroy(localIs);    
    VecScatterDestroy(primalScatter);    

    PetscScalar *localSolPrimal;
    VecGetArray(local_sol_primal, &localSolPrimal);


727
    // === And copy from PETSc local vectors to the DOF vectors. ===
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>& dofVec = *(vec.getDOFVector(i));

      for (DofMapping::iterator it = globalIndexB.begin();
	   it != globalIndexB.end(); ++it) {
	int petscIndex = (it->second - rStartB) * nComponents + i;
	dofVec[it->first] = localSolB[petscIndex];
      }

      int counter = 0;
      for (DofMapping::iterator it = globalPrimalIndex.begin();
	   it != globalPrimalIndex.end(); ++it) {
	dofVec[it->first] = localSolPrimal[counter * nComponents + i];
	counter++;
      }
    }



    VecRestoreArray(vec_sol_b, &localSolB);
    VecRestoreArray(local_sol_primal, &localSolPrimal);
    VecDestroy(local_sol_primal);
  }


754
755
  void PetscSolverFeti::fillPetscMatrix(Matrix<DOFMatrix*> *mat, 
					SystemVector *vec)
756
757
  {
    FUNCNAME("PetscSolverFeti::fillPetscMatrix()");   
758

759
760
761
762
    nComponents = vec->getSize();

    // === Create all sets and indices. ===

763
764
    updateDofData();

765
766
767
768
769
770
771

    // === Create matrices for the FETI-DP method. ===

    int nRowsRankB = nRankB * nComponents;
    int nRowsOverallB = nOverallB * nComponents;
    int nRowsRankPrimal = nRankPrimals * nComponents;
    int nRowsOverallPrimal = nOverallPrimals * nComponents;
772
773
    int nRowsInterior = nLocalInterior * nComponents;
    int nRowsBound = nLocalBound * nComponents;
774
775

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
776
777
		    nRowsRankB, nRowsRankB, nRowsOverallB, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_b);
778
779

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
780
781
782
		    nRowsRankPrimal, nRowsRankPrimal, 
		    nRowsOverallPrimal, nRowsOverallPrimal,
		    10, PETSC_NULL, 10, PETSC_NULL, &mat_primal_primal);
783
784

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
785
786
787
		    nRowsRankB, nRowsRankPrimal, 
		    nRowsOverallB, nRowsOverallPrimal,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_b_primal);
788
789

    MatCreateMPIAIJ(PETSC_COMM_WORLD,
790
791
792
793
		    nRowsRankPrimal, nRowsRankB,
		    nRowsOverallPrimal, nRowsOverallB,
		    100, PETSC_NULL, 100, PETSC_NULL, &mat_primal_b);

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    // === Create matrices for Dirichlet FETI-DP preconditioner. ===

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsInterior, 100, PETSC_NULL,
		    &mat_interior_interior);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsBound, 100, PETSC_NULL,
		    &mat_bound_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsInterior, nRowsBound, 100, PETSC_NULL,
		    &mat_interior_bound);

    MatCreateSeqAIJ(PETSC_COMM_SELF,
		    nRowsBound, nRowsInterior, 100, PETSC_NULL,
		    &mat_bound_interior);

813
814
    
    // === Prepare traverse of sequentially created matrices. ===
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    vector<int> cols, colsOther;
    vector<double> values, valuesOther;
    cols.reserve(300);
    colsOther.reserve(300);
    values.reserve(300);
    valuesOther.reserve(300);

830
831
832
833
834
835
836
    vector<int> colsLocal, colsLocalOther;
    vector<double> valuesLocal, valuesLocalOther;
    colsLocal.reserve(300);
    colsLocalOther.reserve(300);
    valuesLocal.reserve(300);
    valuesLocalOther.reserve(300);

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

    // === Traverse all sequentially created matrices and add the values to ===
    // === the global PETSc matrices.                                       ===

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
	if (!(*mat)[i][j])
	  continue;

	traits::col<Matrix>::type col((*mat)[i][j]->getBaseMatrix());
	traits::const_value<Matrix>::type value((*mat)[i][j]->getBaseMatrix());
	
	// Traverse all rows.
	for (cursor_type cursor = begin<row>((*mat)[i][j]->getBaseMatrix()), 
	       cend = end<row>((*mat)[i][j]->getBaseMatrix()); cursor != cend; ++cursor) {
852

853
	  bool rowPrimal = primals.count(*cursor) != 0;
854
  
855
856
	  cols.clear();
	  colsOther.clear();
857
	  values.clear();	  
858
	  valuesOther.clear();
859
860
861
862
863
864

	  colsLocal.clear();
	  colsLocalOther.clear();
	  valuesLocal.clear();
	  valuesLocalOther.clear();

865
866
867
868
869
	  
	  // Traverse all columns.
	  for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	       icursor != icend; ++icursor) {

870
871
872
	    bool colPrimal = primals.count(col(*icursor)) != 0;

	    if (colPrimal) {
873
874
875
876
877
878
879
880
881
882
	      // Column is a primal variable.

	      TEST_EXIT_DBG(globalPrimalIndex.count(col(*icursor)))
		("No global primal index for DOF %d!\n", col(*icursor));
	      
	      int colIndex = globalPrimalIndex[col(*icursor)] * nComponents + j;
	      
	      if (rowPrimal) {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
883
	      } else {
884
885
886
887
888
889
890
891
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      }
	    } else {
	      // Column is not a primal variable.

	      TEST_EXIT_DBG(globalIndexB.count(col(*icursor)))
		("No global B index for DOF %d!\n", col(*icursor));
892
	      
893
894
895
896
897
898
899
900
	      int colIndex = globalIndexB[col(*icursor)] * nComponents + j;

	      if (rowPrimal) {
		colsOther.push_back(colIndex);
		valuesOther.push_back(value(*icursor));
	      } else {
		cols.push_back(colIndex);
		values.push_back(value(*icursor));
901
902
	      }
	    }
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943



	    // === For preconditioner ===

	    if (!rowPrimal && !colPrimal) {
	      int rowIndex = globalIndexB[*cursor] - rStartB;
	      int colIndex = globalIndexB[col(*icursor)] - rStartB;
		
	      if (rowIndex < nLocalInterior) {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		}
	      } else {
		if (colIndex < nLocalInterior) {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB) * nComponents + j;

		  colsLocalOther.push_back(colIndex2);
		  valuesLocalOther.push_back(value(*icursor));
		} else {
		  int colIndex2 = 
		    (globalIndexB[col(*icursor)] - rStartB - nLocalInterior) * nComponents + j;

		  colsLocal.push_back(colIndex2);
		  valuesLocal.push_back(value(*icursor));
		}
	      }		
	    }


944
	  }
945

946
947
948
	  if (rowPrimal) {
	    TEST_EXIT_DBG(globalPrimalIndex.count(*cursor))
	      ("Should not happen!\n");
949

950
951
952
	    int rowIndex = globalPrimalIndex[*cursor] * nComponents + i;
	    MatSetValues(mat_primal_primal, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
953

954
955
956
957
958
959
	    if (colsOther.size())
	      MatSetValues(mat_primal_b, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  } else {
	    TEST_EXIT_DBG(globalIndexB.count(*cursor))
	      ("Should not happen!\n");
960

961
962
963
	    int rowIndex = globalIndexB[*cursor] * nComponents + i;
	    MatSetValues(mat_b_b, 1, &rowIndex, cols.size(),
			 &(cols[0]), &(values[0]), ADD_VALUES);
964

965
966
967
968
	    if (colsOther.size())
	      MatSetValues(mat_b_primal, 1, &rowIndex, colsOther.size(),
			   &(colsOther[0]), &(valuesOther[0]), ADD_VALUES);
	  }
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

	  // === For preconditioner ===

	  if (!rowPrimal) {
	    int rowIndex = globalIndexB[*cursor] - rStartB;

	    if (rowIndex < nLocalInterior) {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB) * nComponents + i;

	      MatSetValues(mat_interior_interior, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_interior_bound, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);
	    } else {
	      int rowIndex2 = 
		(globalIndexB[*cursor] - rStartB - nLocalInterior) * nComponents + i;

	      MatSetValues(mat_bound_bound, 1, &rowIndex2, colsLocal.size(),
			   &(colsLocal[0]), &(valuesLocal[0]), INSERT_VALUES);

	      if (colsLocalOther.size()) 
		MatSetValues(mat_bound_interior, 1, &rowIndex2, colsLocalOther.size(),
			     &(colsLocalOther[0]), &(valuesLocalOther[0]), INSERT_VALUES);

	    }
	  }


1000
1001
1002
1003
	} 
      }
    }
    
1004

1005
    // === Start global assembly procedure. ===
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

    MatAssemblyBegin(mat_b_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_b, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_b_primal, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_b_primal, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_primal_b, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_primal_b, MAT_FINAL_ASSEMBLY);
	  

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    MatAssemblyBegin(mat_interior_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_interior, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_interior_bound, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_interior_bound, MAT_FINAL_ASSEMBLY);

    MatAssemblyBegin(mat_bound_interior, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(mat_bound_interior, MAT_FINAL_ASSEMBLY);


1033
    // === Create and fill PETSc's right hand side vectors. ===
1034

1035
1036
1037
    VecCreate(PETSC_COMM_WORLD, &f_b);
    VecSetSizes(f_b, nRankB * nComponents, nOverallB * nComponents);
    VecSetType(f_b, VECMPI);
1038

1039
1040
    VecCreate(PETSC_COMM_WORLD, &f_primal);
    VecSetSizes(f_primal, nRankPrimals * nComponents, 
1041
		nOverallPrimals * nComponents);
1042
    VecSetType(f_primal, VECMPI);
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double>::Iterator dofIt(vec->getDOFVector(i), USED_DOFS);
      for (dofIt.reset(); !dofIt.end(); ++dofIt) {
	int index = dofIt.getDOFIndex();
	if (primals.count(index)) {
	  TEST_EXIT_DBG(globalPrimalIndex.count(index))
	    ("Should not happen!\n");

	  index = globalPrimalIndex[index] * nComponents + i;
	  double value = *dofIt;
1054
	  VecSetValues(f_primal, 1, &index, &value, ADD_VALUES);
1055
1056
1057
1058
1059
1060
	} else {
	  TEST_EXIT_DBG(globalIndexB.count(index))
	    ("Should not happen!\n");

	  index = globalIndexB[index] * nComponents + i;
	  double value = *dofIt;
1061
	  VecSetValues(f_b, 1, &index, &value, ADD_VALUES);
1062
1063
1064
1065
	}      
      }
    }

1066
1067
    VecAssemblyBegin(f_b);
    VecAssemblyEnd(f_b);
1068

1069
1070
    VecAssemblyBegin(f_primal);
    VecAssemblyEnd(f_primal);
1071
1072


1073
    // === Create and fill PETSc matrix for Lagrange constraints. ===
1074

1075
    createMatLagrange();
1076
1077

    
1078
1079
1080
1081
1082
1083
    // === Create PETSc solver for the Schur complement on primal variables. ===
    
    createSchurPrimalKsp();


    // === Create PETSc solver for the FETI-DP operator. ===
1084
1085

    createFetiKsp();
1086
1087
1088
  }


1089
  void PetscSolverFeti::solveFetiMatrix(SystemVector &vec)
1090
  {
1091
    FUNCNAME("PetscSolverFeti::solveFetiMatrix()");
1092

1093
1094
1095
    // Create transpose of Lagrange matrix.
    Mat mat_lagrange_transpose;
    MatTranspose(mat_lagrange, MAT_INITIAL_MATRIX, &mat_lagrange_transpose);
1096
1097


1098
    // === Create nested matrix which will contain the overall FETI system. ===
1099

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
    Mat A;
    Mat nestedA[3][3];
    nestedA[0][0] = mat_b_b;
    nestedA[0][1] = mat_b_primal;
    nestedA[0][2] = mat_lagrange_transpose;
    nestedA[1][0] = mat_primal_b;
    nestedA[1][1] = mat_primal_primal;
    nestedA[1][2] = PETSC_NULL;
    nestedA[2][0] = mat_lagrange;
    nestedA[2][1] = PETSC_NULL;
    nestedA[2][2] = PETSC_NULL;
1111

1112
    MatCreateNest(PETSC_COMM_WORLD, 3, PETSC_NULL, 3, PETSC_NULL, &(nestedA[0][0]), &A);
1113

1114
1115
1116
    MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
  
1117
1118


1119
1120
1121
    int nRankNest = (nRankB + nRankPrimals + nRankLagrange) * nComponents;
    int nOverallNest = (nOverallB + nOverallPrimals + nOverallLagrange) * nComponents;
    int rStartNest = (rStartB + rStartPrimals + rStartLagrange) * nComponents;
1122

1123
1124
    {
      // === Test some matrix sizes. ===
1125

1126
1127
1128
1129
1130
      int matRow, matCol;
      MatGetLocalSize(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == nRankNest)("Should not happen!\n");
      mpi::globalAdd(matRow);
      TEST_EXIT_DBG(matRow == nOverallNest)("Should not happen!\n");
1131

1132
1133
1134
      MatGetOwnershipRange(A, &matRow, &matCol);
      TEST_EXIT_DBG(matRow == rStartNest)("Should not happen!\n");
    }
1135

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    // === Create rhs and solution vectors for the overall FETI system. ===

    Vec f;
    VecCreate(PETSC_COMM_WORLD, &f);
    VecSetSizes(f, nRankNest, nOverallNest);
    VecSetType(f, VECMPI);

    Vec b;
    VecDuplicate(f, &b);

    
    // === Fill rhs vector by coping the primal and non primal PETSc vectors. ===
1148

1149
1150
    PetscScalar *local_f_b;
    VecGetArray(f_b, &local_f_b);
1151

1152
1153
    PetscScalar *local_f_primal;
    VecGetArray(f_primal, &local_f_primal);
1154

1155
1156
1157
1158
1159
1160
1161
    {
      int size;
      VecGetLocalSize(f_b, &size);
      TEST_EXIT_DBG(size == nRankB * nComponents)("Should not happen!\n");
      VecGetLocalSize(f_primal, &size);
      TEST_EXIT_DBG(size == nRankPrimals * nComponents)("Should not happen!\n");
    }
1162

1163
1164
    PetscScalar *local_f;
    VecGetArray(f, &local_f);
1165

1166
1167
1168
1169
1170
    int index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_f[index++] = local_f_b[i];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_f[index++] = local_f_primal[i];
1171

1172
1173
1174
    VecRestoreArray(f, &local_f);  
    VecRestoreArray(f_b, &local_f_b);
    VecRestoreArray(f_primal, &local_f_primal);
1175

1176
1177
    
    // === Create solver and solve the overall FETI system. ===
1178

1179
1180
1181
1182
    KSP ksp;
    KSPCreate(PETSC_COMM_WORLD, &ksp);
    KSPSetOperators(ksp, A, A, SAME_NONZERO_PATTERN);
    KSPSetFromOptions(ksp);
1183
1184


1185
    KSPSolve(ksp, f, b);
1186
1187


1188
1189
1190
1191
1192
    // === Reconstruct FETI solution vectors. ===
    
    Vec u_b, u_primal;
    VecDuplicate(f_b, &u_b);
    VecDuplicate(f_primal, &u_primal);
1193
1194
    

1195
1196
    PetscScalar *local_b;
    VecGetArray(b, &local_b);
1197

1198
1199
    PetscScalar *local_u_b;
    VecGetArray(u_b, &local_u_b);
1200

1201
1202
    PetscScalar *local_u_primal;
    VecGetArray(u_primal, &local_u_primal);
1203

1204
1205
1206
1207
1208
    index = 0;
    for (int i = 0; i < nRankB * nComponents; i++)
      local_u_b[i] = local_b[index++];
    for (int i = 0; i < nRankPrimals * nComponents; i++)
      local_u_primal[i] = local_b[index++];
1209

1210
1211
1212
    VecRestoreArray(f, &local_b);
    VecRestoreArray(u_b, &local_u_b);
    VecRestoreArray(u_primal, &local_u_primal);
1213

1214
    recoverSolution(u_b, u_primal, vec);
1215

1216
1217
1218
1219
    VecDestroy(u_b);
    VecDestroy(u_primal);
    VecDestroy(b);
    VecDestroy(f);
1220

1221
1222
    KSPDestroy(ksp);
  }
1223
1224


1225
1226
1227
  void PetscSolverFeti::solveReducedFetiMatrix(SystemVector &vec)
  {
    FUNCNAME("PetscSolverFeti::solveReducedFetiMatrix()");
1228

1229
    // === Create solver for the non primal (thus local) variables. ===
1230

1231
1232
1233
1234
1235
1236
1237
    KSPCreate(PETSC_COMM_WORLD, &ksp_b);
    KSPSetOperators(ksp_b, mat_b_b, mat_b_b, SAME_NONZERO_PATTERN);
    KSPSetOptionsPrefix(ksp_b, "solver_b_");
    KSPSetFromOptions(ksp_b);

    // RHS and solution vector.
    Vec vec_rhs;
1238

1239
1240
1241
1242
1243
1244
1245
1246
    // Some temporary vectors.
    Vec tmp_b0, tmp_b1, tmp_lagrange0, tmp_primal0, tmp_primal1;
    MatGetVecs(mat_lagrange, PETSC_NULL, &tmp_lagrange0);
    MatGetVecs(mat_lagrange, PETSC_NULL, &vec_rhs);
    MatGetVecs(mat_b_b, PETSC_NULL, &tmp_b0);
    MatGetVecs(mat_b_b, PETSC_NULL, &tmp_b1);
    MatGetVecs(mat_primal_primal, PETSC_NULL, &tmp_primal0);
    MatGetVecs(mat_primal_primal, PETSC_NULL, &tmp_primal1);
1247
1248


1249
    // === Create new rhs ===
1250

1251
1252
1253
    // vec_rhs = L * inv(K_BB) * f_b
    KSPSolve(ksp_b, f_b, tmp_b0);
    MatMult(mat_lagrange, tmp_b0, vec_rhs);
1254

1255
1256
    // tmp_primal0 = M_PiB * inv(K_BB) * f_b
    MatMult(mat_primal_b, tmp_b0, tmp_primal0);
1257

1258
1259
    // tmp_primal0 = f_Pi - M_PiB * inv(K_BB) * f_b
    VecAXPBY(tmp_primal0, -1.0, 1.0, f_primal);
1260

1261
1262
    // tmp_primal0 = inv(S_PiPi) (f_Pi - M_PiB * inv(K_BB) * f_b)
    KSPSolve(ksp_schur_primal, tmp_primal0, tmp_primal0);
1263

1264
1265
1266
1267
    //
    MatMult(mat_b_primal, tmp_primal0, tmp_b0);
    KSPSolve(ksp_b, tmp_b0, tmp_b0);
    MatMult(mat_lagrange, tmp_b0, tmp_lagrange0);
1268

1269
1270
    //
    VecAXPBY(vec_rhs, 1.0, 1.0, tmp_lagrange0);
1271
1272


1273
    // === Solve with FETI-DP operator. ===
1274

1275
    KSPSolve(ksp_feti, vec_rhs, vec_rhs);
1276
1277

   
1278
    // === Solve for u_primals. ===
1279

1280
    VecCopy(f_primal, tmp_primal0);
1281

1282
1283
    KSPSolve(ksp_b, f_b, tmp_b0);
    MatMult(mat_primal_b, tmp_b0, tmp_primal1);
1284

1285
    VecAXPBY(tmp_primal0, -1.0, 1.0, tmp_primal1);
1286

1287
1288
1289
    MatMultTranspose(mat_lagrange, vec_rhs, tmp_b0);
    KSPSolve(ksp_b, tmp_b0, tmp_b0);
    MatMult(mat_primal_b, tmp_b0, tmp_primal1);
1290

1291
1292
    VecAXPBY(tmp_primal0, 1.0, 1.0, tmp_primal1);
    KSPSolve(ksp_schur_primal, tmp_primal0, tmp_primal0);
1293
1294

    
1295
    // === Solve for u_b. ===
1296

1297
1298
1299
    VecCopy(f_b, tmp_b0);
    MatMultTranspose(mat_lagrange, vec_rhs, tmp_b1);
    VecAXPBY(tmp_b0, -1.0, 1.0, tmp_b1);
1300

1301
1302
    MatMult(mat_b_primal, tmp_primal0, tmp_b1);
    VecAXPBY(tmp_b0, -1.0, 1.0, tmp_b1);
1303

1304
    KSPSolve(ksp_b, tmp_b0, tmp_b0);
1305
1306


1307
    // === And recover AMDiS solution vectors. ===
1308
    
1309
    recoverSolution(tmp_b0, tmp_primal0, vec);
1310
1311


1312
    // === Destroy all data structures. ===
1313
    
1314
1315
1316
1317
1318
1319
    VecDestroy(vec_rhs);
    VecDestroy(tmp_b0);
    VecDestroy(tmp_b1);
    VecDestroy(tmp_lagrange0);
    VecDestroy(tmp_primal0);
    VecDestroy(tmp_primal1);
1320
1321
	    

1322
    KSPDestroy(ksp_b);
1323

1324
1325
1326
1327
1328
    MatDestroy(mat_b_b);
    MatDestroy(mat_primal_primal);
    MatDestroy(mat_b_primal);
    MatDestroy(mat_primal_b);
    MatDestroy(mat_lagrange);
1329

1330
1331
    VecDestroy(f_b);
    VecDestroy(f_primal);
1332

1333
    destroySchurPrimalKsp();
1334

1335
1336
1337
1338
1339
1340
1341
1342
1343
    destroyFetiKsp();

    
    // === Destroy preconditioner data structures. ===

    MatDestroy(mat_interior_interior);
    MatDestroy(mat_bound_bound);
    MatDestroy(mat_interior_bound);
    MatDestroy(mat_bound_interior);
1344
  }
1345

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

  void PetscSolverFeti::solvePetscMatrix(SystemVector &vec, AdaptInfo *adaptInfo)
  {
    FUNCNAME("PetscSolverFeti::solvePetscMatrix()");

    int debug = 0;
    Parameters::get("parallel->debug feti", debug);

    if (debug) {
      WARNING("FETI matrix is solved globally, thus without reducing to the lagrange multipliers!\n");

      solveFetiMatrix(vec);
    } else {
      solveReducedFetiMatrix(vec);
1360
    }      
1361
  }
1362

1363
1364
1365
#endif

}