BasisFunction.h 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file BasisFunction.h */

#ifndef AMDIS_BASISFUNCTION_H
#define AMDIS_BASISFUNCTION_H

#include <string>
26
#include "AMDiS_fwd.h"
27
28
#include "Global.h"
#include "Boundary.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
29
#include "MatrixVector.h"
30
31
32
33
34
35
36
37
38
39
40
41

namespace AMDiS {

  class DOFAdmin;
  class Element;
  class ElInfo;
  class RCNeighbourList;
  template<typename T> class WorldVector;
  template<typename T> class WorldMatrix;
  class Quadrature;

  template <typename ReturnType, typename ArgumentType> class AbstractFunction;
42
  // template <typename T> class DOFVector;
43
44
45
46
47
48
  template <typename T> class DOFIndexed;
  template <typename T> class DimVec;
  template <typename T> class DimMat;
  template <typename T, GeoIndex d> class FixVec;
  template <typename T> class VectorOfFixVecs;

49
50
51
52
53
54
55

  /** \brief
   * Function interface for evaluating basis functions.
   */
  class BasFctType
  {
  public:
56
    BasFctType() {}
57

58
    virtual ~BasFctType() {}
59
60
61
62
63
64
65
66
67
68
69

    virtual double operator()(const DimVec<double>&) const = 0;
  };


  /** \brief
   * Function interface for evaluating gradients of basis functions.
   */   
  class GrdBasFctType
  {
  public:
70
    GrdBasFctType() {}
71

72
    virtual ~GrdBasFctType() {}
73
74
75
76
77
78
79
80
81
82
83
84

    virtual void operator()(const DimVec<double>&,
			    DimVec<double>&) const = 0;
  };

  
  /** \brief
   * Function interface for evaluating second derivative of basis functions.
   */
  class D2BasFctType
  {
  public:
85
    D2BasFctType() {}
86

87
    virtual ~D2BasFctType() {}
88
89
90
91
92

    virtual void operator()(const DimVec<double>&,
			    DimMat<double>&) const = 0;
  };
			    
93
94
95
96
  typedef BasFctType *BFptr;
  typedef GrdBasFctType *GBFptr;
  typedef D2BasFctType *DBFptr;

97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  /** \ingroup FEMSpace
   * \brief
   * Base class for finite element basis functions. In order to build up a
   * finite element space, we have to specify a set of local basis functions.
   * Together with the correspondig DOF administration and the underlying mesh,
   * the finite element space is given. 
   * This class holds the local basis functions and their derivatives of the
   * reference element. They are evaluated at barycentric coordinates, so they
   * can be used on every element of the mesh.  
   */
  class BasisFunction
  {  
  protected:
    /** \brief
     * Creates a BasisFunction object of given dim and degree 
     */
114
    BasisFunction(const std::string& name, int dim, int degree);
115
116
117
118
119
120
121
122
123
124
125

    /** \brief
     * destructor
     */
    virtual ~BasisFunction();

  public:
    /** \brief
     * compares two BasisFunction objects.
     */
    virtual bool operator==(const BasisFunction& a) const {
126
      return a.getName() == name;
127
    }
128
129
130
131
132

    /** \brief
     * Returns !(*this == b)
     */
    inline bool operator!=(const BasisFunction& b) const {
133
      return !(operator == (b));
134
    }
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    /** \brief
     * Used by \ref getDOFIndices and \ref getVec
     */
    virtual int* orderOfPositionIndices(const Element* el, GeoIndex position, 
					int positionIndex) const = 0;

    /** \brief
     * Pointer to a function which connects the set of local basis functions
     * with its global DOFs.
     * getDOFIndices(el, admin, dof) returns a pointer to a const vector of 
     * length \ref nBasFcts where the i-th entry is the index of the DOF 
     * associated to the i-th basis function; arguments are the actual element 
     * el and the DOF admin admin of the corresponding finite element space 
     * (these indices depend on all defined DOF admins and thus on the 
     * corresponding admin); if the last argument dof is NULL, getDOFndices 
     * has to provide memory for storing this vector, which is overwritten on the
     * next call of getDOFIndices; if dof is not NULL, dof is a pointer to a 
     * vector which has to be filled;   
     */
    virtual const DegreeOfFreedom* getDOFIndices(const Element*,
						 const DOFAdmin&, 
						 DegreeOfFreedom*) const = 0;

    /** \brief
Thomas Witkowski's avatar
Thomas Witkowski committed
160
161
162
163
164
165
166
167
168
     * The second argument 'bound' has to be a pointer to a vector which has 
     * to be filled. Its length is \ref nBasFcts (the number of basis functions
     * in the used finite element space). After calling this function, the i-th 
     * entry of the array is the boundary type of the i-th basis function of this
     * element.
     * 
     * This function needs boundary information within the ElInfo object; thus, 
     * all routines using this function on the elements need the FILL_BOUND 
     * flag during mesh traversal;
169
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
170
    virtual void getBound(const ElInfo*, BoundaryType *) const {};
171

Thomas Witkowski's avatar
Thomas Witkowski committed
172
    /// Returns \ref degree of BasisFunction
173
174
    inline const int getDegree() const { 
      return degree; 
175
    }
176

Thomas Witkowski's avatar
Thomas Witkowski committed
177
    /// Returns \ref dim of BasisFunction
178
179
    inline const int getDim() const { 
      return dim; 
180
    }
181

Thomas Witkowski's avatar
Thomas Witkowski committed
182
    /// Returns \ref nBasFcts which is the number of local basis functions
183
184
    inline const int getNumber() const { 
      return nBasFcts; 
185
    }
186

Thomas Witkowski's avatar
Thomas Witkowski committed
187
    /// Returns \ref name of BasisFunction
188
    inline const std::string& getName() const { 
189
      return name; 
190
    }
191

Thomas Witkowski's avatar
Thomas Witkowski committed
192
    /// Returns \ref nDOF[i]
193
194
    int getNumberOfDOFs(int i) const;

Thomas Witkowski's avatar
Thomas Witkowski committed
195
    /// Returns \ref nDOF
196
197
    inline DimVec<int>* getNumberOfDOFs() const { 
      return nDOF; 
198
    }
199

Thomas Witkowski's avatar
Thomas Witkowski committed
200
    /// Initialisation of the \ref nDOF vector. Must be implemented by sub classes
201
202
    virtual void setNDOF() = 0;

Thomas Witkowski's avatar
Thomas Witkowski committed
203
    /// Returns the barycentric coordinates of the i-th basis function.
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    virtual DimVec<double> *getCoords(int i) const = 0;

    /** \brief
     * Returns a pointer to a const vector with interpolation coefficients of the
     * function f; if indices is a pointer to NULL, the coefficient for all 
     * basis functions are calculated and the i-th entry in the vector is the 
     * coefficient of the i-th basis function; if indices is non NULL, only the 
     * coefficients for a subset of the local basis functions has to be 
     * calculated; n is the number of those basis functions, indices[0], . . . 
     * , indices[n-1] are the local indices of the basis functions where the
     * coefficients have to be calculated, and the i-th entry in the return 
     * vector is then the coefficient of the indices[i]-th basis function; coeff 
     * may be a pointer to a vector which has to be filled 
     * (compare the dof argument of \ref getDOFIndices());
     * such a function usually needs vertex coordinate information; thus, all 
     * routines using this function on the elements need the FILL COORDS flag 
     * during mesh traversal.
     * Must be implemented by sub classes.
     */
    virtual const double* interpol(const ElInfo *el_info, 
				   int n, const int *indices, 
				   AbstractFunction<double, WorldVector<double> > *f,
				   double *coeff) = 0;


    /** \brief
     * WorldVector<double> valued interpol function.
     */
    virtual const WorldVector<double>* 
    interpol(const ElInfo *el_info, int no, 
	     const int *b_no,
	     AbstractFunction<WorldVector<double>,WorldVector<double> > *f, 
	     WorldVector<double> *vec) = 0;

    /** \brief
     * Returns the i-th local basis function
     */
    inline BasFctType *getPhi(int i) const { 
      return (*phi)[i]; 
243
    }
244
245
246
247
248
249

    /** \brief
     * Returns the gradient of the i-th local basis function
     */
    inline GrdBasFctType *getGrdPhi(int i) const { 
      return  (*grdPhi)[i]; 
250
    }
251
252
253
254
255
256

    /** \brief
     * Returns the second derivative of the i-th local basis function
     */
    inline D2BasFctType *getD2Phi(int i) const { 
      return (*d2Phi)[i]; 
257
    }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    /** \brief
     * Approximates the L2 scalar products of a given function with all basis 
     * functions by numerical quadrature and adds the corresponding values to a 
     * DOF vector;
     * f is a pointer for the evaluation of the given function in world 
     * coordinates x and returns the value of that function at x; if f is a NULL
     *  pointer, nothing is done;
     * fh is the DOF vector where at the i-th entry the approximation of the L2 
     * scalar product of the given function with the i-th global basis function 
     * of fh->feSpace is stored;
     * quad is the quadrature for the approximation of the integral on each leaf 
     * element of fh->feSpace->mesh; if quad is a NULL pointer, a default 
     * quadrature which is exact of degree 2*fh->feSpace->basFcts->degree-2 is 
     * used.
     * The integrals are approximated by looping over all leaf elements, 
     * computing the approximations to the element contributions and adding 
     * these values to the vector fh by add element vec().
     * The vector fh is not initialized with 0.0; only the new contributions are 
     * added
     */
    virtual void l2ScpFctBas(Quadrature*,
			     AbstractFunction<double, WorldVector<double> >* /*f*/,
281
282
			     DOFVector<double>* /*fh*/)
    {}
283
284
285
286
287
288

    /** \brief
     * WorldVector<double> valued l2ScpFctBas function
     */
    virtual void l2ScpFctBas(Quadrature* ,
			     AbstractFunction<WorldVector<double>, WorldVector<double> >* /*f*/,
289
290
			     DOFVector<WorldVector<double> >* /*fh*/) 
    {}
291
292
293
294
295


    /** \brief
     * Interpolates a DOFIndexed<double> after refinement
     */
296
297
    virtual void  refineInter(DOFIndexed<double> *, RCNeighbourList*, int)
    {}
298
299
300
301

    /** \brief
     * Interpolates a DOFIndexed<double> after coarsening
     */
302
303
    virtual void  coarseInter(DOFIndexed<double> *, RCNeighbourList*, int)
    {}
304
305
306
307

    /** \brief
     * Restricts a DOFIndexed<double> after coarsening
     */
308
309
    virtual void  coarseRestr(DOFIndexed<double> *, RCNeighbourList*, int)
    {}
310
311
312
313

    /** \brief
     * Interpolates a DOFVector<WorldVector<double> > after refinement
     */
314
315
    virtual void  refineInter(DOFVector<WorldVector<double> >*, RCNeighbourList*, int)
    {}
316
317
318
319

    /** \brief
     * Interpolates a DOFVector<WorldVector<double> > after coarsening
     */
320
321
    virtual void  coarseInter(DOFVector<WorldVector<double> >*, RCNeighbourList*, int)
    {}
322
323
324
325

    /** \brief
     * Restricts a DOFVector<WorldVector<double> > after coarsening
     */
326
327
    virtual void  coarseRestr(DOFVector<WorldVector<double> >*, RCNeighbourList*, int)
    {}
328

329
    /// Returns local dof indices of the element for the given fe space.
330
331
332
333
334
    virtual const DegreeOfFreedom *getLocalIndices(const Element*,
						   const DOFAdmin*,
						   DegreeOfFreedom*) const
    {
      return NULL;
335
    }
336

337
    /// Returns local dof indices of the element for the given fe space.
Thomas Witkowski's avatar
Thomas Witkowski committed
338
339
340
    virtual void getLocalIndicesVec(const Element*,
				    const DOFAdmin*,
				    Vector<DegreeOfFreedom>*) const
341
    {}
Thomas Witkowski's avatar
Thomas Witkowski committed
342

343
344
345
346
347
348

    /** \brief
     * Evaluates elements value at barycentric coordinates lambda with local 
     * coefficient vector uh.
     */
    double evalUh(const DimVec<double>& lambda, const double* uh) const;
349

350
351
352
353
354
355
356
357
    /** \brief
     * Evaluates elements value at barycentric coordinates lambda with local 
     * coefficient vector uh. If val is not NULL the result will be stored 
     * there, otherwise a pointer to a static local variable is returned which 
     * will be overwritten after the next call.
     */
    const WorldVector<double>& evalUh(const DimVec<double>& lambda, 
				      const WorldVector<double>* uh, WorldVector<double>* val) const;
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    /** \brief
     * Evaluates the gradient at barycentric coordinates lambda. Lambda is the
     * Jacobian of the barycentric coordinates. uh is the local coefficient
     * vector. If val is not NULL the result will be stored 
     * there, otherwise a pointer to a static local variable is returned which 
     * will be overwritten after the next call.
     */
    const WorldVector<double>& evalGrdUh(const DimVec<double>& lambda,
					 const DimVec<WorldVector<double> >& Lambda,
					 const double* uh,  WorldVector<double>* val) const;

    /** \brief
     * Evaluates the second derivative at barycentric coordinates lambda. 
     * Lambda is the Jacobian of the barycentric coordinates. uh is the local 
     * coefficient vector. If val is not NULL the result will be stored 
     * there, otherwise a pointer to a static local variable is returned which 
     * will be overwritten after the next call.
     */
    const WorldMatrix<double>& evalD2Uh(const DimVec<double>& lambda,
					const DimVec<WorldVector<double> >& Lambda,
					const double* uh, WorldMatrix<double>* val) const;

  protected:
    /** \brief
     * Textual description
     */
385
    std::string name;     
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    /** \brief
     * Number of basisfunctions on one Element
     */                    
    int nBasFcts;

    /** \brief
     * Maximal degree of the basis functions
     */                    
    int degree;

    /** \brief
     * Dimension of the basis functions
     */                    
    int dim;

Thomas Witkowski's avatar
Thomas Witkowski committed
402
403
404
405
406
    /** \brief
     * Dimension of the world.
     */
    int dow;

407
408
409
410
411
412
413
414
    /** \brief
     * Number of DOFs at the different positions
     */                    
    DimVec<int> *nDOF;

    /** \brief
     * Vector of the local functions
     */
415
    std::vector<BasFctType*> *phi;
416
417
418
419

    /** \brief
     * Vector of gradients
     */
420
    std::vector<GrdBasFctType*> *grdPhi;
421
422
423
424

    /** \brief
     * Vector of second derivatives
     */
425
    std::vector<D2BasFctType*> *d2Phi;
Thomas Witkowski's avatar
Thomas Witkowski committed
426
427
428
429
430
431


    /** \brief
     * Is used by function evalGrdUh. To make it thread safe, we need a
     * temporary DimVec for every thread.
     */
432
    std::vector<DimVec<double>* > grdTmpVec1;
Thomas Witkowski's avatar
Thomas Witkowski committed
433
434
435
436
437

    /** \brief
     * Is used by function evalGrdUh. To make it thread safe, we need a
     * temporary DimVec for every thread.
     */
438
    std::vector<DimVec<double>* > grdTmpVec2;
439
440
441
442
443
  };

}

#endif  // AMDIS_BASISFUNCTION_H