Mesh.cc 28.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include "AdaptStationary.h"
#include "AdaptInstationary.h"
#include "FiniteElemSpace.h"
#include "ElementData.h"
#include "MacroElement.h"
#include "MacroReader.h"
#include "Mesh.h"
#include "Traverse.h"
#include "Parameters.h"
#include "FixVec.h"
#include "DOFVector.h"
#include "CoarseningManager.h"
#include "DOFIterator.h"
#include "VertexVector.h"
#include "MacroWriter.h"
#include "PeriodicMap.h"
#include "Projection.h"
#include <algorithm>
#include <set>
#include <map>

#include "time.h"

namespace AMDiS {

#define TIME_USED(f,s) ((double)((s)-(f))/(double)CLOCKS_PER_SEC)

  //**************************************************************************
  //  flags, which information should be present in the elInfo structure     
  //**************************************************************************

  const Flag Mesh::FILL_NOTHING    = 0X00L;
  const Flag Mesh::FILL_COORDS     = 0X01L;
  const Flag Mesh::FILL_BOUND      = 0X02L;
  const Flag Mesh::FILL_NEIGH      = 0X04L;
  const Flag Mesh::FILL_OPP_COORDS = 0X08L;
  const Flag Mesh::FILL_ORIENTATION= 0X10L;
  const Flag Mesh::FILL_DET        = 0X20L;
  const Flag Mesh::FILL_GRD_LAMBDA = 0X40L;
  const Flag Mesh::FILL_ADD_ALL    = 0X80L;


  const Flag Mesh::FILL_ANY_1D= (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_2D= (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_3D= (0X01L|0X02L|0X04L|0X08L|0X10L|0x20L|0X40L|0X80L);

  //**************************************************************************
  //  flags for Mesh traversal                                                
  //**************************************************************************

  const Flag Mesh::CALL_EVERY_EL_PREORDER  = 0X0100L;
  const Flag Mesh::CALL_EVERY_EL_INORDER   = 0X0200L;
  const Flag Mesh::CALL_EVERY_EL_POSTORDER = 0X0400L;
  const Flag Mesh::CALL_LEAF_EL            = 0X0800L;
  const Flag Mesh::CALL_LEAF_EL_LEVEL      = 0X1000L;
  const Flag Mesh::CALL_EL_LEVEL           = 0X2000L;
  const Flag Mesh::CALL_MG_LEVEL           = 0X4000L ; // used in mg methods 


  // const Flag Mesh::USE_PARAMETRIC          = 0X8000L ; // used in mg methods 

  // ::std::list<Mesh*> Mesh::meshes;
  DOFAdmin* Mesh::compressAdmin = NULL;
  Mesh* Mesh::traversePtr = NULL;
  int Mesh::iadmin = 0;
  ::std::vector<DegreeOfFreedom> Mesh::dof_used;
  const int Mesh::MAX_DOF=100;
  ::std::map<DegreeOfFreedom, DegreeOfFreedom*> Mesh::serializedDOFs;

  struct delmem { 
    DegreeOfFreedom* ptr;
    int              len;
  };


  Mesh::Mesh(const ::std::string& aName, int dimension) 
    : name(aName), 
      dim(dimension), 
      nVertices(0),
      nEdges(0),
      nLeaves(0), 
      nElements(0),
      parametric(NULL), 
      preserveCoarseDOFs(false),
      nDOFEl(0),
      nDOF(dimension, DEFAULT_VALUE, 0),
      nNodeEl(0),
      node(dimension, DEFAULT_VALUE, 0),
      elementPrototype(NULL),
      elementDataPrototype(NULL),
      elementIndex(-1),
      initialized(false),
      final_lambda(dimension, DEFAULT_VALUE, 0.0)
  {

    FUNCNAME("Mesh::Mesh");

    // set default element prototype
    switch(dim) {
    case 1:
      elementPrototype = NEW Line(this);
      break;
    case 2:
      elementPrototype = NEW Triangle(this);
      break;
    case 3:
      elementPrototype = NEW Tetrahedron(this);
      break;
    default:
      ERROR_EXIT("invalid dimension\n");
    }

    elementPrototype->setIndex(-1);

    elementIndex=0;
  };

  Mesh::~Mesh()
  {
  };

  void Mesh::addMacroElement(MacroElement* m) {
    macroElements.push_back(m); 
    m->setIndex(macroElements.size());
  };




  int Mesh::traverse(int level, Flag flag, 
		     int (*el_fct)(ElInfo*))
  {
    FUNCNAME("Mesh::traverse()");
    ::std::deque<MacroElement*>::iterator mel;
    ElInfo* elinfo = createNewElInfo();
    Traverse tinfo(this, flag, level, el_fct);
    int sum = 0;
  
    elinfo->setFillFlag(flag);
  
    if (flag.isSet(Mesh::CALL_LEAF_EL_LEVEL) || 
	flag.isSet(Mesh::CALL_EL_LEVEL)      || 
	flag.isSet(Mesh::CALL_MG_LEVEL)) {
      TEST(level >= 0)("invalid level: %d\n", level);
    }
  
    for (mel = macroElements.begin(); mel != macroElements.end(); mel++) {
      elinfo->fillMacroInfo(*mel);
      sum += tinfo.recursive(elinfo);
    }

    DELETE elinfo;
    
    return (flag.isSet(Mesh::FILL_ADD_ALL)) ? sum : 0;
  }



  void Mesh::addDOFAdmin(DOFAdmin *localAdmin)
  {    
    FUNCNAME("Mesh::addDOFAdmin()");

    int i, j, d, n;
    ::std::vector<DOFAdmin*>::iterator dai;

    localAdmin->setMesh(this);
    n = admin.size();

    dai=::std::find(admin.begin(),admin.end(),localAdmin);
    if (dai!= admin.end()) {
      ERROR("admin %s is already associated to mesh %s\n",
	    localAdmin->getName().c_str(), this->getName().c_str());
    }

    // ===== adding dofs to already existing elements ============================ 

    if (initialized) {
      static bool pnd_1d_0[2] = {true, true};
      static bool pnd_1d_1[1] = {false};
      static bool pnd_2d_0[3] = {true, true, true};
      static bool pnd_2d_1[3] = {true, true, false};
      static bool pnd_2d_2[1] = {false};
      static bool pnd_3d_0[4] = {true, true, true, true};
      static bool pnd_3d_1[6] = {false, true, true, true, true, true};
      static bool pnd_3d_2[4] = {true, true, false, false};
      static bool pnd_3d_3[1] = {false};
      static bool *pnd_1d[2] = {pnd_1d_0, pnd_1d_1};
      static bool *pnd_2d[3] = {pnd_2d_0, pnd_2d_1, pnd_2d_2};
      static bool *pnd_3d[4] = {pnd_3d_0, pnd_3d_1, pnd_3d_2, pnd_3d_3};
      static bool **parentNeedsDOF[4] = {NULL, pnd_1d, pnd_2d, pnd_3d};

     
      ::std::list<struct delmem> delList;
      ::std::map< ::std::set<DegreeOfFreedom>, DegreeOfFreedom*> dofPtrMap;
      const DOFAdmin *vertexAdmin = getVertexAdmin();
      int vertexAdminPreDOFs = vertexAdmin->getNumberOfPreDOFs(VERTEX);

      // finding necessary node number for new admin

      int newNNode=0;
      GeoIndex geoIndex;

      for(d = 0; d < dim+1; d++) {
	geoIndex = INDEX_OF_DIM(d, dim);
      
	if (localAdmin->getNumberOfDOFs(geoIndex)>0||nDOF[geoIndex]>0)
	  newNNode+=getGeo(geoIndex);
      };

      bool extendNodes=(newNNode>nNodeEl);
      int  oldNNodes=nNodeEl;

      nNodeEl=newNNode;

      TraverseStack stack;
      ElInfo *elInfo = NULL;
    
      WARNING("You are using untested code (adding dofs to existing mesh). Please contact\nsoftware administrator if any errors occur in this context.\n");

      elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
      while(elInfo) {
	Element *element = elInfo->getElement();
	DegreeOfFreedom *newDOF, **oldDOF, **dof = 
	  const_cast<DegreeOfFreedom**>(element->getDOF());

	int index = 0;

	if (extendNodes) {
	  oldDOF=dof;
	  element->setDOFPtrs();
	  dof=const_cast<DegreeOfFreedom**>(element->getDOF());
	  int index=0,oldIndex=0;
	  for(d = 0; d < dim+1; d++) {
	    geoIndex = INDEX_OF_DIM(d, dim);
	    if (nDOF[geoIndex]>0) {
	      for(i=0;i<getGeo(geoIndex);++i) 
		dof[index++]=oldDOF[oldIndex++];
	    }
	    else {
	      if (localAdmin->getNumberOfDOFs(geoIndex)>0) 
		index+=getGeo(geoIndex);
	    }
	  }
	
	  FREE_MEMORY(oldDOF, DegreeOfFreedom*, oldNNodes);

247
	  TEST_EXIT_DBG(index == nNodeEl)("ERROR: Number of entered nodes %f != number of nodes %f\n",index,nNodeEl);
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

	}


	index=0;

	// allocate new memory at elements
	for(d = 0; d < dim+1; d++) {
	  geoIndex = INDEX_OF_DIM(d, dim);
      
	  int numberOfDOFs = localAdmin->getNumberOfDOFs(geoIndex);
	  int numberOfPreDOFs = nDOF[geoIndex];

	  if (numberOfDOFs>0||numberOfPreDOFs>0) {

	    // for all vertices/edges/...
	    for(i = 0; i < getGeo(geoIndex); i++, index++) {
	      ::std::set<DegreeOfFreedom> dofSet;
	      for(j = 0; j < d+1; j++) {
		dofSet.insert(dof[element->getVertexOfPosition(geoIndex, i, j)][vertexAdminPreDOFs]);
	      }
	    
	      if(element->isLeaf() || parentNeedsDOF[dim][d][i]) {
		if(dofPtrMap[dofSet] == NULL) {
		  if(localAdmin->getNumberOfDOFs(geoIndex)) {
		    newDOF = GET_MEMORY(DegreeOfFreedom, numberOfPreDOFs + numberOfDOFs);
		    // copy old dofs to new memory and free old memory
		    if(dof[index]) {
		      for(j = 0; j < numberOfPreDOFs; j++) {
			newDOF[j] = dof[index][j];
		      }
		      //	  FREE_MEMORY(dof[index], DegreeOfFreedom, numberOfPreDOFs);
		      // Do not free memory. The information has to be used to identify the part in other elements.
		      // The memory is only marked for freeing.
		      struct delmem fm;
		      fm.ptr=dof[index];
		      fm.len=numberOfPreDOFs;
		      delList.push_back(fm);
		    }
		    for(j = 0; j < numberOfDOFs; j++) {
		      newDOF[numberOfPreDOFs + j] = localAdmin->getDOFIndex();
		    }
		    dof[index] = newDOF;
		  }
		  dofPtrMap[dofSet] = dof[index];
		} else {
		  dof[index] = dofPtrMap[dofSet];
		}
	      }
	    }
	  }
	}
	elInfo = stack.traverseNext(elInfo);
      }
  
      // now free the old dof memory:

      ::std::list<struct delmem>::iterator it=delList.begin();
    
      while(it!=delList.end()) {
	FREE_MEMORY((*it).ptr, DegreeOfFreedom, (*it).len);
	it++;
      }

      delList.clear();

    }
    // ============================================================================

    admin.push_back(localAdmin);

    nDOFEl = 0;

    localAdmin->setNumberOfPreDOFs(VERTEX,nDOF[VERTEX]);
    nDOF[VERTEX]  += localAdmin->getNumberOfDOFs(VERTEX);
    nDOFEl += getGeo(VERTEX) * nDOF[VERTEX];

    if(dim > 1) {
      localAdmin->setNumberOfPreDOFs(EDGE,nDOF[EDGE]);
      nDOF[EDGE]    += localAdmin->getNumberOfDOFs(EDGE);
      nDOFEl += getGeo(EDGE) * nDOF[EDGE];
    }

    localAdmin->setNumberOfPreDOFs(CENTER,nDOF[CENTER]);
    nDOF[CENTER]  += localAdmin->getNumberOfDOFs(CENTER);
    nDOFEl += nDOF[CENTER];

335
    TEST_EXIT_DBG(nDOF[VERTEX] > 0)("no vertex dofs\n");
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    node[VERTEX]  = 0;
    nNodeEl     = getGeo(VERTEX);

    if(dim > 1) {
      node[EDGE]    = nNodeEl;
      if (nDOF[EDGE] > 0) nNodeEl += getGeo(EDGE);
    }

    if (3==dim){
      localAdmin->setNumberOfPreDOFs(FACE,nDOF[FACE]);
      nDOF[FACE]  += localAdmin->getNumberOfDOFs(FACE);
      nDOFEl     += getGeo(FACE) * nDOF[FACE];
      node[FACE]    = nNodeEl;
      if (nDOF[FACE] > 0) nNodeEl +=  getGeo(FACE);
    }

    node[CENTER]    = nNodeEl;
    if (nDOF[CENTER] > 0) nNodeEl += 1;

    return;
  }


  /****************************************************************************/
  /*  dofCompress: remove holes in dof vectors                                */
  /****************************************************************************/

  void Mesh::dofCompress()
  {
366
367
368
    FUNCNAME("Mesh::dofCompress()");
    int size;
    Flag fill_flag;
369

370
    for (iadmin = 0; iadmin < static_cast<int>(admin.size()); iadmin++) {
371
372
373
      compressAdmin = admin[iadmin];

      TEST_EXIT_DBG(compressAdmin)("no admin[%d] in mesh\n", iadmin);
374
375
376
377
378
379
380
      
      if ((size = compressAdmin->getSize()) < 1) 
	continue;
      if (compressAdmin->getUsedDOFs() < 1)    
	continue;
      if (compressAdmin->getHoleCount() < 1)    
	continue;
381
    
382
383
384
385
386
387
388
389
      newDOF.resize(size);
      
      compressAdmin->compress(newDOF);
      
      if (preserveCoarseDOFs) {
	fill_flag = Mesh::CALL_EVERY_EL_PREORDER | Mesh::FILL_NOTHING;
      } else {
	fill_flag = Mesh::CALL_LEAF_EL | Mesh::FILL_NOTHING;
390
      }
391
392
393
394
395
396
      
      traverse( -1, fill_flag, newDOFFct1);
      traverse( -1, fill_flag, newDOFFct2);
      
      newDOF.resize(0);
    }   
397
398
399
400
401
  }


  DegreeOfFreedom *Mesh::getDOF(GeoIndex position)
  {
402
    FUNCNAME("Mesh::getDOF()");
403

404
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
405
      ("unknown position %d\n", position);
406

407
408
409
    int ndof = getNumberOfDOFs(position);
    if (ndof <= 0) 
      return(NULL);
410

411
    DegreeOfFreedom *dof = GET_MEMORY(DegreeOfFreedom, ndof);
412

413
414
    for (int i = 0; i < getNumberOfDOFAdmin(); i++) {
      const DOFAdmin *localAdmin = &getDOFAdmin(i);
415
      TEST_EXIT_DBG(localAdmin)("no admin[%d]\n", i);
416
417
418
419
      
      int n  = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
420
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
421
422
423
      
      for (int j = 0; j < n; j++) {
	dof[n0 + j] = const_cast<DOFAdmin*>(localAdmin)->getDOFIndex();
424
      }
425
    }
426
427
428
429
430
431
432
  
    return(dof);
  }


  DegreeOfFreedom **Mesh::createDOFPtrs()
  {
433
    FUNCNAME("Mesh::createDOFPtrs()");
434
435
436
437

    if (nNodeEl <= 0)
      return(NULL);

438
439
    DegreeOfFreedom **ptrs = GET_MEMORY(DegreeOfFreedom*, nNodeEl);
    for (int i = 0; i < nNodeEl; i++)
440
441
442
443
444
445
446
      ptrs[i] = NULL;

    return(ptrs);
  }

  void Mesh::freeDOFPtrs(DegreeOfFreedom **ptrs)
  {
447
    FUNCNAME("Mesh::freeDOFPtrs()");
448

449
    TEST_EXIT_DBG(ptrs)("ptrs=NULL\n");
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    if (nNodeEl <= 0)
      return;
  
    FREE_MEMORY(ptrs, DegreeOfFreedom*, nNodeEl);
  }


  const DOFAdmin *Mesh::createDOFAdmin(const ::std::string& lname,DimVec<int> lnDOF)
  {
    FUNCNAME("Mesh::createDOFAdmin");

    DOFAdmin         *localAdmin;
    int              i;

    localAdmin=NEW DOFAdmin(this,lname);

    for (i = 0; i < dim+1; i++)
      localAdmin->setNumberOfDOFs(i,lnDOF[i]);

    addDOFAdmin(localAdmin);

    return(localAdmin);
  }





  // int Mesh::macroType(const ::std::string& filename, const ::std::string& type)
  // {
  //   const char *fn, *t;

  //   if (3==dim) return 0;
  
  //   if (filename.size() <= type.size())
  //     return(false);

  //   fn = filename.data();
  //   while (*fn) fn++;
  //   t = type.data();
  //   while (*t) t++;

  //   while (t != type  &&  *t == *fn) t--;
  
  //   return(t == type);
  // }

  const DOFAdmin* Mesh::getVertexAdmin() const
  {
    int       i;
    const DOFAdmin *localAdmin = NULL;

    for (i = 0; i < static_cast<int>(admin.size()); i++)
      {
	if (admin[i]->getNumberOfDOFs(VERTEX))
	  {
	    if (!localAdmin)  
	      localAdmin = admin[i];
	    else if (admin[i]->getSize() < localAdmin->getSize())
	      localAdmin = admin[i];
	  }
      }
    return(localAdmin);
  }

  void Mesh::freeDOF(DegreeOfFreedom* dof, GeoIndex position)
  {
    FUNCNAME("Mesh::freeDOF");
    DOFAdmin *localAdmin;
    int     i, j, n, n0, ndof;

522
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
      ("unknown position %d\n",position);

    ndof = nDOF[position];
    if (ndof) 
      {
	if (!dof)
	  {
	    MSG("dof = NULL, but ndof=%d\n", ndof);
	    return;
	  }
      }
    else
      {
	if (dof)
	  {
	    MSG("dof != NULL, but ndof=0\n");
	  }
	return;
      }

543
    TEST_EXIT_DBG(ndof <= MAX_DOF)
544
545
546
547
548
549
550
551
552
      ("ndof too big: ndof=%d, MAX_DOF=%d\n",ndof,MAX_DOF);

    for (i = 0; i < static_cast<int>(admin.size()); i++)
      {
	localAdmin = admin[i];

	n  = localAdmin->getNumberOfDOFs(position);
	n0 = localAdmin->getNumberOfPreDOFs(position);

553
	TEST_EXIT_DBG(n+n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

	for (j = 0; j < n; j++)
	  {
	    localAdmin->freeDOFIndex(dof[n0+j]);
	  }
      }

    FREE_MEMORY(dof, DegreeOfFreedom, ndof);
    return;  
  }

  void Mesh::freeElement(Element* el)
  {
    freeDOFPtrs(const_cast<DegreeOfFreedom**>(el->getDOF()));
    DELETE el;
  }


  Element* Mesh::createNewElement(Element *parent)
  {
    FUNCNAME("Mesh::createNewElement()");
575
576

    TEST_EXIT_DBG(elementPrototype)("no element prototype\n");
577
578
579

    Element *el = parent ? parent->clone() : elementPrototype->clone();
  
580
    if (!parent && elementDataPrototype) {
581
582
583
584
585
586
587
588
      el->setElementData(elementDataPrototype->clone()); 
    } else {
      el->setElementData(NULL); // must be done in ElementData::refineElementData()
    }

    return el;
  }

589

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
  ElInfo* Mesh::createNewElInfo()
  {
    switch(dim) {
    case 1:
      return NEW ElInfo1d(this);
      break;
    case 2:
      return NEW ElInfo2d(this);
      break;
    case 3:
      return NEW ElInfo3d(this);
      break;
    default:
      ERROR_EXIT("invalid dim\n");
      return NULL;
    };
  }



  bool Mesh::findElInfoAtPoint(const WorldVector<double>& xy,
			       ElInfo *el_info,
			       DimVec<double>&    bary,
			       const MacroElement      *start_mel,
			       const WorldVector<double> *xy0,
			       double            *sp)
  {
    static const MacroElement *mel = NULL;
    DimVec<double> lambda(dim, NO_INIT);
    ElInfo *mel_info = NULL;
    int  i, k;
    bool inside;

    mel_info = createNewElInfo();

    if (start_mel != NULL)
      mel = start_mel;
    else
      if((mel == NULL)||(mel->getElement()->getMesh() != this))
	mel = *(macroElements.begin());

    mel_info->setFillFlag(Mesh::FILL_COORDS);
    g_xy  = &xy;
    g_xy0 = xy0;
    g_sp  = sp;

    mel_info->fillMacroInfo(mel);


    while ((k = mel_info->worldToCoord(xy, &lambda)) >= 0) {
      if (mel->getNeighbour(k)) {
	mel = mel->getNeighbour(k);
	mel_info->fillMacroInfo(mel);
	continue;
      }
      break;
    }

    /* now, descend in tree to find leaf element at point */
    inside = findElementAtPointRecursive(mel_info, lambda, k, el_info);
    for (i=0; i<=dim; i++) bary[i] = final_lambda[i];
  
    DELETE mel_info;

    return(inside);
  }

  bool Mesh::findElementAtPoint(const WorldVector<double>&  xy,
				Element           **elp, 
				DimVec<double>&     bary,
				const MacroElement *start_mel,
				const WorldVector<double>  *xy0,
				double             *sp)
  {
    ElInfo *el_info = NULL;
    int val;

    el_info = createNewElInfo();

    val = findElInfoAtPoint(xy, el_info, bary, start_mel, xy0, sp);

    *elp = el_info->getElement();

    DELETE el_info;

    return(val);
  }



  bool Mesh::findElementAtPointRecursive(ElInfo           *el_info,
					 const DimVec<double>& lambda,
					 int                   outside,
					 ElInfo* final_el_info)
  {
    FUNCNAME("Mesh::findElementAtPointRecursive");
    Element *el = el_info->getElement();
    ElInfo *c_el_info = NULL;
    DimVec<double> c_lambda(dim, NO_INIT);
    int i, inside;
    int     ichild, c_outside;

    if (el->isLeaf()) {
      *final_el_info = *el_info;
      if (outside < 0) {
	for (i=0; i<=dim; i++)  final_lambda[i] = lambda[i];
	return(true);
      }
      else 
	{  /* outside */
	  if (g_xy0) 
	    { /* find boundary point of [xy0, xy] */
	      double s;
	      el_info->worldToCoord(*(g_xy0), &c_lambda);
	      s = lambda[outside] / (lambda[outside] - c_lambda[outside]);
	      for (i=0; i<=dim; i++) 
		{
		  final_lambda[i] = s * c_lambda[i] + (1.0-s) * lambda[i];
		}
	      if (g_sp) *(g_sp) = s;
	      if(dim == 3) 
		MSG("outside finest level on el %d: s=%.3e\n", el->getIndex(), s);

	      return(false);  /* ??? */
	    }
	  else return(false);
	}
    }

    c_el_info = createNewElInfo();

    if(dim == 1) {
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (outside >= 0) {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (outside >= 0)  {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[1] = lambda[1] - lambda[0];
	  c_lambda[0] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 1 */

    if(dim == 2) {
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 0\n");
	  }
	} else {
	  c_lambda[0] = lambda[2];
	  c_lambda[1] = lambda[0] - lambda[1];
	  c_lambda[2] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 1\n");
	  }
	} else {
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[2];
	  c_lambda[2] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 2 */

    if(dim == 3) {
      if (el->isNewCoordSet()) {
	if (lambda[0] >= lambda[1])
	  ichild = 0;
	else
	  ichild = 1;
	c_el_info->fillElInfo(ichild, el_info);
	c_outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);

	if (c_outside>=0) {  /* test is other child is better... */
	  DimVec<double> c_lambda2(dim, NO_INIT);
	  int c_outside2;
	  ElInfo *c_el_info2 = createNewElInfo();

	  c_el_info2->fillElInfo(1-ichild, el_info);
	  c_outside2 = c_el_info2->worldToCoord(*(g_xy), &c_lambda2);

	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      ichild, c_outside, c_lambda[0],c_lambda[1],c_lambda[2],c_lambda[3]);
	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      1-ichild, c_outside2, c_lambda2[0],c_lambda2[1],c_lambda2[2],
	      c_lambda2[3]);

	  if ((c_outside2 < 0) || (c_lambda2[c_outside2] > c_lambda[c_outside])) {
	    for (i=0; i<=dim; i++) c_lambda[i] = c_lambda2[i];
	    c_outside = c_outside2;
	    *c_el_info = *c_el_info2;
	    ichild = 1 - ichild;
	  }
	  DELETE c_el_info2;
	}
	outside = c_outside;
      } else {  /* no new_coord */
	if (lambda[0] >= lambda[1]) {
	  c_el_info->fillElInfo(0, el_info);
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][2]];
	  c_lambda[3] = 2.0 * lambda[1];
	} else {
	  c_el_info->fillElInfo(1, el_info);
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][2]];
	  c_lambda[3] = 2.0 * lambda[0];
	}
      }
    }  /* DIM == 3 */

    inside = findElementAtPointRecursive(c_el_info, c_lambda, outside, 
					 final_el_info);
    DELETE c_el_info;

    return(inside); 
  }


  void Mesh::setDiameter(const WorldVector<double>& w) { diam = w; }

  void Mesh::setDiameter(int i, double w) { diam[i] = w; }


  int Mesh::newDOFFct1(ElInfo* ei) {
    ei->getElement()->newDOFFct1(compressAdmin);
    return 0;
  }

  int Mesh::newDOFFct2(ElInfo* ei) {
    ei->getElement()->newDOFFct2(compressAdmin);
    return 0;
  }

  void Mesh::serialize(::std::ostream &out)
  {
    serializedDOFs.clear();

    // write name
    out << name << ::std::endl;

    // write dim
    out.write(reinterpret_cast<const char*>(&dim), sizeof(int));

    // write nVertices
    out.write(reinterpret_cast<const char*>(&nVertices), sizeof(int));

    // write nEdges
    out.write(reinterpret_cast<const char*>(&nEdges), sizeof(int));

    // write nLeaves
    out.write(reinterpret_cast<const char*>(&nLeaves), sizeof(int));

    // write nElements
    out.write(reinterpret_cast<const char*>(&nElements), sizeof(int));

    // write nFaces
    out.write(reinterpret_cast<const char*>(&nFaces), sizeof(int));

    // write maxEdgeNeigh
    out.write(reinterpret_cast<const char*>(&maxEdgeNeigh), sizeof(int));

    // write diam
    diam.serialize(out);

    // write preserveCoarseDOFs
    out.write(reinterpret_cast<const char*>(&preserveCoarseDOFs), sizeof(bool));

    // write nDOFEl
    out.write(reinterpret_cast<const char*>(&nDOFEl), sizeof(int));

    // write nDOF
    nDOF.serialize(out);

    // write nNodeEl
    out.write(reinterpret_cast<const char*>(&nNodeEl), sizeof(int));

    // write node
    node.serialize(out);

    // write admins
    int i, size = static_cast<int>(admin.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      admin[i]->serialize(out);
    }

    // write macroElements
    size = static_cast<int>(macroElements.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      macroElements[i]->serialize(out);
    }

    // write elementIndex
    out.write(reinterpret_cast<const char*>(&elementIndex), sizeof(int));

    // write initialized
    out.write(reinterpret_cast<const char*>(&initialized), sizeof(bool));

    serializedDOFs.clear();
  }

  void Mesh::deserialize(::std::istream &in)
  {
    serializedDOFs.clear();

    // read name
    in >> name;
    in.get();

    // read dim
    int oldVal = dim;
    in.read(reinterpret_cast<char*>(&dim), sizeof(int));
927
    TEST_EXIT_DBG((oldVal == 0) || (dim == oldVal))("invalid dimension\n");
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

    // read nVertices
    in.read(reinterpret_cast<char*>(&nVertices), sizeof(int));

    // read nEdges
    in.read(reinterpret_cast<char*>(&nEdges), sizeof(int));

    // read nLeaves
    in.read(reinterpret_cast<char*>(&nLeaves), sizeof(int));

    // read nElements
    in.read(reinterpret_cast<char*>(&nElements), sizeof(int));

    // read nFaces
    in.read(reinterpret_cast<char*>(&nFaces), sizeof(int));

    // read maxEdgeNeigh
    in.read(reinterpret_cast<char*>(&maxEdgeNeigh), sizeof(int));

    // diam
    diam.deserialize(in);

    // read preserveCoarseDOFs
    in.read(reinterpret_cast<char*>(&preserveCoarseDOFs), sizeof(bool));

    // read nDOFEl
    oldVal = nDOFEl;
    in.read(reinterpret_cast<char*>(&nDOFEl), sizeof(int));
956
    TEST_EXIT_DBG((oldVal == 0) || (nDOFEl == oldVal))("invalid nDOFEl\n");
957
958
959
960
961
962
963

    // read nDOF
    nDOF.deserialize(in);

    // read nNodeEl
    oldVal = nNodeEl;
    in.read(reinterpret_cast<char*>(&nNodeEl), sizeof(int));
964
    TEST_EXIT_DBG((oldVal == 0) || (nNodeEl == oldVal))("invalid nNodeEl\n");
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

    // read node
    node.deserialize(in);

    // read admins
    int i, size;
    in.read(reinterpret_cast<char*>(&size), sizeof(int));
    admin.resize(size, NULL);
    for (i = 0; i < size; i++) {
      if (!admin[i]) {
	admin[i] = NEW DOFAdmin(this);
      }
      admin[i]->deserialize(in);
    }

    // read macroElements
    in.read(reinterpret_cast<char*>(&size), sizeof(int));

    ::std::vector< ::std::vector<int> > neighbourIndices(size);

    for (i = 0; i < static_cast<int>(macroElements.size()); i++) {
      if (macroElements[i]) {
	DELETE macroElements[i];
      }
    }
    macroElements.resize(size);
    for(i = 0; i < size; i++) {
      macroElements[i] = NEW MacroElement(dim);
      macroElements[i]->writeNeighboursTo(&(neighbourIndices[i]));
      macroElements[i]->deserialize(in);
    }

    // read elementIndex
    in.read(reinterpret_cast<char*>(&elementIndex), sizeof(int));

    // read initialized
    in.read(reinterpret_cast<char*>(&initialized), sizeof(bool));

    // set neighbour pointer in macro elements
    int j, neighs = getGeo(NEIGH);
    for(i = 0; i < static_cast<int>(macroElements.size()); i++) {
      for(j = 0; j < neighs; j++) {
	int index = neighbourIndices[i][j];
	if(index != -1) {
	  macroElements[i]->setNeighbour(j, macroElements[index]);
	} else {
	  macroElements[i]->setNeighbour(j, NULL);
	}
      }
    }

    // set mesh pointer in elements
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
    while(elInfo) {
      elInfo->getElement()->setMesh(this);
      elInfo = stack.traverseNext(elInfo);
    }

    serializedDOFs.clear();
  }

  void Mesh::initialize() 
  {
    ::std::string macroFilename("");
    ::std::string valueFilename("");
    ::std::string periodicFile("");
    int check = 1;

    GET_PARAMETER(0, name + "->macro file name",  &macroFilename);
    GET_PARAMETER(0, name + "->value file name",  &valueFilename);
    GET_PARAMETER(0, name + "->periodic file", &periodicFile);
    GET_PARAMETER(0, name + "->check", "%d", &check);
    GET_PARAMETER(0, name + "->preserve coarse dofs", "%d", &preserveCoarseDOFs);

    if (macroFilename.length()) {
      macroFileInfo_ = MacroReader::readMacro(macroFilename.c_str(), 
					      this,
					      periodicFile == "" ? NULL : periodicFile.c_str(),
					      check);

      // If there is no value file which should be written, we can delete
      // the information of the macro file.
      if (!valueFilename.length()) {
	clearMacroFileInfo();
      }
    }

    initialized = true;
  }

  bool Mesh::associated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
    ::std::map<BoundaryType, VertexVector*>::iterator it;
    ::std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
    for (it = periodicAssociations.begin(); it != end; ++it) {
      if ((*(it->second))[dof1] == dof2)
	return true;
    }
    return false;
  }

  bool Mesh::indirectlyAssociated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
    ::std::vector<DegreeOfFreedom> associatedToDOF1;
    int i, size;
    ::std::map<BoundaryType, VertexVector*>::iterator it;
    ::std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
    DegreeOfFreedom dof, assDOF;

    associatedToDOF1.push_back(dof1);
    for(it = periodicAssociations.begin(); it != end; ++it) {
      size = static_cast<int>(associatedToDOF1.size());
      for(i = 0; i < size; i++) {
	dof = associatedToDOF1[i];
	assDOF = (*(it->second))[dof];
	if(assDOF == dof2) {
	  return true;
	} else {
	  if(assDOF != dof) associatedToDOF1.push_back(assDOF);
	}
      }
    }
    return false;
  }

  void Mesh::clearMacroFileInfo()
  {
    macroFileInfo_->clear(getNumberOfEdges(),
			  getNumberOfVertices());
    DELETE macroFileInfo_;
  }
}