DOFVector.cc 19.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#include "DOFVector.h"
#include "Traverse.h"
#include "DualTraverse.h"
#include "FixVec.h"

namespace AMDiS {

  template<>
  void DOFVector<double>::coarseRestrict(RCNeighbourList& list, int n)
  {
    switch(coarsenOperation) {
    case NO_OPERATION:
      return;
      break;
    case COARSE_RESTRICT:
      (const_cast<BasisFunction*>(feSpace->getBasisFcts()))->coarseRestr(this, &list, n);
      break;
    case COARSE_INTERPOL:
      (const_cast<BasisFunction*>(feSpace->getBasisFcts()))->coarseInter(this, &list, n);
      break;
    default:
      ERROR_EXIT("invalid coarsen operation\n");
    }
  }

  template<>
  void DOFVector<double>::refineInterpol(RCNeighbourList& list, int n)
  {
    (const_cast<BasisFunction*>(feSpace->getBasisFcts()))->refineInter(this, &list, n);
  }

  template<>
  void DOFVector<WorldVector<double> >::refineInterpol(RCNeighbourList& list, int n)
  {
    if(n < 1) return;
    int dim = feSpace->getMesh()->getDim();
    Element *el = list.getElement(0);
    int n0 = feSpace->getAdmin()->getNumberOfPreDOFs(VERTEX);
    DegreeOfFreedom dof0 = el->getDOF(0, n0);
    DegreeOfFreedom dof1 = el->getDOF(1, n0);
    DegreeOfFreedom dof_new = el->getChild(0)->getDOF(dim, n0);
    vec[dof_new] = vec[dof0];
    vec[dof_new] += vec[dof1];
    vec[dof_new] *= 0.5;
  }

  template<>
  DOFVector<WorldVector<double> >*
  DOFVector<double>::getGradient(DOFVector<WorldVector<double> > *grad) const 
  {
    FUNCNAME("DOFVector<double>::getGradient()");

    // define result vector
    static DOFVector<WorldVector<double> > *result = NULL;

    if(grad) {
      result = grad;
    } else {
      if(result && result->getFESpace() != feSpace) {
	DELETE result;
	result = NEW DOFVector<WorldVector<double> >(feSpace, "gradient");
      }
    }

    int i, j;

    Mesh *mesh = feSpace->getMesh();

    int dim = mesh->getDim();

    const BasisFunction *basFcts = feSpace->getBasisFcts();
    int nBasFcts = basFcts->getNumber();

    DOFAdmin *admin = feSpace->getAdmin();

    // count number of nodes and dofs per node
    ::std::vector<int> numNodeDOFs;
    ::std::vector<int> numNodePreDOFs;
    ::std::vector<DimVec<double>*> bary;

    int numNodes = 0;
    int numDOFs = 0;

    for(i = 0; i < dim + 1; i++) {
      GeoIndex geoIndex = INDEX_OF_DIM(i, dim);
      int numPositionNodes = mesh->getGeo(geoIndex);
      int numPreDOFs = admin->getNumberOfPreDOFs(i);
      for(j = 0; j < numPositionNodes; j++) {
	int dofs = basFcts->getNumberOfDOFs(geoIndex);
	numNodeDOFs.push_back(dofs);
	numDOFs += dofs;
	numNodePreDOFs.push_back(numPreDOFs);
      }
      numNodes += numPositionNodes;
    }

    TEST_EXIT(numNodes == mesh->getNumberOfNodes())
      ("invalid number of nodes\n");

    TEST_EXIT(numDOFs == nBasFcts)
      ("number of dofs != number of basis functions\n");

    for(i = 0; i < numDOFs; i++) {
      bary.push_back(basFcts->getCoords(i));
    }

    // traverse mesh
    ::std::vector<bool> visited(getUsedSize(), false);

    TraverseStack stack;

    Flag fillFlag = Mesh::CALL_LEAF_EL | Mesh::FILL_GRD_LAMBDA;

    ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag);

    while(elInfo) {

      const DegreeOfFreedom **dof = elInfo->getElement()->getDOF();

      const double *localUh = getLocalVector(elInfo->getElement(), NULL);

      const DimVec<WorldVector<double> > &grdLambda = elInfo->getGrdLambda();

      int localDOFNr = 0;
      for(i = 0; i < numNodes; i++) { // for all nodes
	for(j = 0; j < numNodeDOFs[i]; j++) { // for all dofs at this node
	  DegreeOfFreedom dofIndex = dof[i][numNodePreDOFs[localDOFNr] + j];
	  if(!visited[dofIndex]) {
	  
	    result[dofIndex] = basFcts->evalGrdUh(*(bary[localDOFNr]),
						  grdLambda, 
						  localUh, 
						  NULL);

	    visited[dofIndex] = true;
	  }
	  localDOFNr++;
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }

    return result;
  }

  template<>
  DOFVector<WorldVector<double> >*
  DOFVector<double>::getRecoveryGradient(DOFVector<WorldVector<double> > *grad) const 
  {
    FUNCNAME("DOFVector<double>::getRecoveryGradient()");

    // define result vector
    static DOFVector<WorldVector<double> > *vec = NULL;

    DOFVector<WorldVector<double> > *result = grad;

    if(!result) {
      if(vec && vec->getFESpace() != feSpace) {
	DELETE vec;
	vec = NULL;
      }
      if(!vec) {
	vec = NEW DOFVector<WorldVector<double> >(feSpace, "gradient");
      }
      result = vec;
    }

    result->set(WorldVector<double>(DEFAULT_VALUE, 0.0));

    DOFVector<double> volume(feSpace, "volume");
    volume.set(0.0);

    int i;

    Mesh *mesh = feSpace->getMesh();

    int dim = mesh->getDim();

    const BasisFunction *basFcts = feSpace->getBasisFcts();

    DOFAdmin *admin = feSpace->getAdmin();

    int numPreDOFs = admin->getNumberOfPreDOFs(0);

    DimVec<double> bary(dim, DEFAULT_VALUE, (1.0 / (dim + 1.0)));

    // traverse mesh
    TraverseStack stack;

    Flag fillFlag = 
      Mesh::CALL_LEAF_EL | Mesh::FILL_DET | Mesh::FILL_GRD_LAMBDA | Mesh::FILL_COORDS;

    ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag);

    while(elInfo) {
      double det = elInfo->getDet();
      const DegreeOfFreedom **dof = elInfo->getElement()->getDOF();
      const double *localUh = getLocalVector(elInfo->getElement(), NULL);
      const DimVec<WorldVector<double> > &grdLambda = elInfo->getGrdLambda();
      const WorldVector<double> &grd = basFcts->evalGrdUh(bary,
							  grdLambda, 
							  localUh, 
							  NULL);

      for(i = 0; i < dim + 1; i++) {
	DegreeOfFreedom dofIndex = dof[i][numPreDOFs];
	(*result)[dofIndex] += grd * det;
	volume[dofIndex] += det;
      }

      elInfo = stack.traverseNext(elInfo);
    }

    DOFVector<double>::Iterator volIt(&volume, USED_DOFS);
    DOFVector<WorldVector<double> >::Iterator grdIt(result, USED_DOFS);

    for(volIt.reset(), grdIt.reset(); !volIt.end(); ++volIt, ++grdIt) {
      if(*volIt != 0.0) {
	*grdIt *= 1.0/(*volIt);
      }
    }

    return result;
  }

  template<>
  const WorldVector<double> *DOFVectorBase<double>::getGrdAtQPs(const ElInfo         *elInfo, 
								const Quadrature     *quad,
								const FastQuadrature *quadFast,
								WorldVector<double>  *grdAtQPs) const
  {
    FUNCNAME("DOFVector<double>::getGrdAtQPs()");
  
    TEST_EXIT(quad || quadFast)("neither quad nor quadFast defined\n");

    if(quad && quadFast) {
      TEST_EXIT(quad == quadFast->getQuadrature())
	("quad != quadFast->quadrature\n");
    }

    TEST_EXIT(!quadFast || quadFast->getBasisFunctions() == feSpace->getBasisFcts())
      ("invalid basis functions");

    Element *el = elInfo->getElement(); 

    int dim = elInfo->getMesh()->getDim();
    int dow = Global::getGeo(WORLD);

    const Quadrature *quadrature = quadFast ? quadFast->getQuadrature() : quad;

    const BasisFunction *basFcts = feSpace->getBasisFcts();

    int numPoints = quadrature->getNumPoints();
    int nBasFcts  = basFcts->getNumber();
    int i, j, k, l;

    static WorldVector<double> *grd = NULL;

    WorldVector<double> *result;

    if (grdAtQPs) {
      result = grdAtQPs;
    } else {
      if(grd) delete [] grd;
      grd = new WorldVector<double>[numPoints];
      for(i = 0; i < numPoints; i++) {
	grd[i].set(0.0);
      }
      result = grd;
    }
  
    const double *localVec = getLocalVector(el, NULL);

    DimVec<double> grd1(dim, NO_INIT);
    int parts = Global::getGeo(PARTS, dim);
    const DimVec<WorldVector<double> > &grdLambda = elInfo->getGrdLambda();

    if(quadFast) {
      for (i = 0; i < numPoints; i++) {
	for(j = 0; j < dim + 1; j++)
	  grd1[j] = 0.0;

	for (j = 0; j < nBasFcts; j++) {
	  for (k = 0; k < parts; k++) {
	    grd1[k] += quadFast->getGradient(i, j, k) * localVec[j];
	  }
	}

	for(l=0; l < dow; l++) {
	  for (result[i][l] = k = 0; k < parts; k++) {
	    result[i][l] += grdLambda[k][l] * grd1[k];
	  }
	}
      }
    } else {
      DimVec<double> grdPhi(dim, NO_INIT);
      for (i = 0; i < numPoints; i++) {
	for(j = 0; j < dim + 1; j++)
	  grd1[j] = 0.0;
	for (j = 0; j < nBasFcts; j++) {
	  grdPhi = (*(basFcts->getGrdPhi(j)))(quad->getLambda(i));
	  for(k = 0; k < parts; k++) {
	    grd1[k] += grdPhi[k] * localVec[j];
	  }
	}

	for(l=0; l < dow; l++) {
	  for (result[i][l] = k = 0; k < parts; k++) {
	    result[i][l] += grdLambda[k][l] * grd1[k];
	  }
	}
      }
    }
  

    return const_cast<const WorldVector<double>*>(result);
  }

  template<>
  const WorldMatrix<double> *DOFVectorBase<double>::getD2AtQPs(const ElInfo         *elInfo, 
							       const Quadrature     *quad,
							       const FastQuadrature *quadFast,
							       WorldMatrix<double>  *d2AtQPs) const
  {
    FUNCNAME("DOFVector<double>::getD2AtQPs()");
  
    TEST_EXIT(quad || quadFast)("neither quad nor quadFast defined\n");

    if(quad && quadFast) {
      TEST_EXIT(quad == quadFast->getQuadrature())
	("quad != quadFast->quadrature\n");
    }

    TEST_EXIT(!quadFast || quadFast->getBasisFunctions() == feSpace->getBasisFcts())
      ("invalid basis functions");

    Element *el = elInfo->getElement(); 

    int dim = elInfo->getMesh()->getDim();
    int dow = Global::getGeo(WORLD);

    const Quadrature *quadrature = quadFast ? quadFast->getQuadrature() : quad;

    const BasisFunction *basFcts = feSpace->getBasisFcts();

    int numPoints = quadrature->getNumPoints();
    int nBasFcts  = basFcts->getNumber();
    int i, j, k, l, iq;

    static WorldMatrix<double> *vec = NULL;

    WorldMatrix<double> *result;

    if (d2AtQPs) {
      result = d2AtQPs;
    } else {
      if(vec) delete [] vec;
      vec = new WorldMatrix<double>[numPoints];
      for(i = 0; i < numPoints; i++) {
	vec[i].set(0.0);
      }
      result = vec;
    }
  
    const double *localVec = getLocalVector(el, NULL);

    DimMat<double> D2Tmp(dim, DEFAULT_VALUE, 0.0);
    int parts = Global::getGeo(PARTS, dim);
    const DimVec<WorldVector<double> > &grdLambda = elInfo->getGrdLambda();

    if(quadFast) {
      for (iq = 0; iq < numPoints; iq++) {
	for (k = 0; k < parts; k++)
	  for (l = 0; l < parts; l++)
	    D2Tmp[k][l] = 0.0;

	for (i = 0; i < nBasFcts; i++) {
	  for (k = 0; k < parts; k++)
	    for (l = 0; l < parts; l++)
	      D2Tmp[k][l] += localVec[i]* quadFast->getSecDer(iq, i, k, l);
	}

	for (i = 0; i < dow; i++)
	  for (j = 0; j < dow; j++) {
	    result[iq][i][j] = 0.0;
	    for (k = 0; k < parts; k++)
	      for (l = 0; l < parts; l++)
		result[iq][i][j] += grdLambda[k][i]*grdLambda[l][j]*D2Tmp[k][l];
	  }
      }
    } else {
      DimMat<double> D2Phi(dim, NO_INIT);
      for (iq = 0; iq < numPoints; iq++) {
	for (k = 0; k < parts; k++)
	  for (l = 0; l < parts; l++)
	    D2Tmp[k][l] = 0.0;

	for (i = 0; i < nBasFcts; i++) {
	  WARNING("not tested after index correction\n");
	  //D2Phi = (*(basFcts->getD2Phi(j)))(quad->getLambda(i));
	  D2Phi = (*(basFcts->getD2Phi(i)))(quad->getLambda(iq));
	  for (k = 0; k < parts; k++)
	    for (l = 0; l < parts; l++)
	      D2Tmp[k][l] += localVec[i] * D2Phi[k][l];
	}

	for (i = 0; i < dow; i++)
	  for (j = 0; j < dow; j++) {
	    result[iq][i][j] = 0.0;
	    for (k = 0; k < parts; k++)
	      for (l = 0; l < parts; l++)
		result[iq][i][j] += grdLambda[k][i]*grdLambda[l][j]*D2Tmp[k][l];
	  }
      }
    }
  

    return const_cast<const WorldMatrix<double>*>(result);
  }

  template<>
  void DOFVector<double>::interpol(DOFVector<double> *source, double factor) 
  {
425
    FUNCNAME("DOFVector<double>::interpol()");
426
427
428
429
430
431
432
433
434
435
436
437
438
439

    const FiniteElemSpace *sourceFeSpace = source->getFESpace();

    const BasisFunction *basisFcts = feSpace->getBasisFcts();
    const BasisFunction *sourceBasisFcts = sourceFeSpace->getBasisFcts();

    int nBasisFcts = basisFcts->getNumber();
    int nSourceBasisFcts = sourceBasisFcts->getNumber();

    this->set(0.0);

    DegreeOfFreedom *localIndices = GET_MEMORY(DegreeOfFreedom, nBasisFcts);
    double *sourceLocalCoeffs = GET_MEMORY(double, nSourceBasisFcts);

440
    if (feSpace->getMesh() == sourceFeSpace->getMesh()) {
441
442
443
444
445
446
      DimVec<double> *coords = NULL;
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(feSpace->getMesh(), -1,
					   Mesh::CALL_LEAF_EL | 
					   Mesh::FILL_COORDS);

447
      while (elInfo) {
448
449
450
451
452
453
	Element *el = elInfo->getElement();

	basisFcts->getLocalIndices(el, feSpace->getAdmin(), localIndices);

	source->getLocalVector(el, sourceLocalCoeffs);

454
455
	for (int i = 0; i < nBasisFcts; i++) {
	  if (vec[localIndices[i]] == 0.0) {
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
	    coords = basisFcts->getCoords(i);
	    vec[localIndices[i]] = sourceBasisFcts->evalUh(*coords, sourceLocalCoeffs) * factor;
	  }
	}
	elInfo = stack.traverseNext(elInfo);
      }
    } else {
      DimVec<double> *coords1 = NULL;
      DimVec<double> coords2(feSpace->getMesh()->getDim(), NO_INIT);
      DualTraverse dualStack;
      ElInfo *elInfo1, *elInfo2;
      ElInfo *elInfoSmall, *elInfoLarge;
      WorldVector<double> worldVec;

      bool nextTraverse = dualStack.traverseFirst(feSpace->getMesh(),
						  sourceFeSpace->getMesh(),
						  -1, -1,
						  Mesh::CALL_LEAF_EL | Mesh::FILL_COORDS,
						  Mesh::CALL_LEAF_EL | Mesh::FILL_COORDS,
						  &elInfo1, &elInfo2,
						  &elInfoSmall, &elInfoLarge);
477
      while (nextTraverse) {     
478
479
480
481
482
483
	basisFcts->getLocalIndices(elInfo1->getElement(), 
				   feSpace->getAdmin(), 
				   localIndices);
	source->getLocalVector(elInfo2->getElement(), 
			       sourceLocalCoeffs);

484
485
	for (int i = 0; i < nBasisFcts; i++) {
	  if (vec[localIndices[i]] == 0.0) {
486
487
488
489
490
	    coords1 = basisFcts->getCoords(i);
	    elInfo1->coordToWorld(*coords1, &worldVec);
	    elInfo2->worldToCoord(worldVec, &coords2);
	  
	    bool isPositive = true;
491
	    for (int j = 0; j < coords2.size(); j++) {
492
493
494
495
496
497
	      if (coords2[j] < 0) {
		isPositive = false;
		break;
	      }
	    }
	  
498
	    if (isPositive) {
499
500
501
502
503
504
505
506
507
508
509
510
511
512
	      vec[localIndices[i]] = sourceBasisFcts->evalUh(coords2, sourceLocalCoeffs);	    
	    }	
	  }
	}
      
	nextTraverse = dualStack.traverseNext(&elInfo1, &elInfo2,
					      &elInfoSmall, &elInfoLarge);
      }
    }
  
    FREE_MEMORY(localIndices, DegreeOfFreedom, nBasisFcts);
    FREE_MEMORY(sourceLocalCoeffs, double, nSourceBasisFcts);
  }

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

  template<>
  void DOFVector<WorldVector<double> >::interpol(DOFVector<WorldVector<double> > *v, double factor) 
  {
    WorldVector<double> nul(DEFAULT_VALUE,0.0);

    this->set(nul);

    DimVec<double> *coords = NULL;

    const FiniteElemSpace *vFESpace = v->getFESpace();

    if (feSpace == vFESpace) {
      WARNING("same FE-spaces\n");
    }

    const BasisFunction *basFcts = feSpace->getBasisFcts();
    const BasisFunction *vBasFcts = vFESpace->getBasisFcts();

    int numBasFcts = basFcts->getNumber();
    int vNumBasFcts = vBasFcts->getNumber();

    if (feSpace->getMesh() == vFESpace->getMesh()) {
      DegreeOfFreedom *localIndices = GET_MEMORY(DegreeOfFreedom, numBasFcts);
      WorldVector<double> *vLocalCoeffs = NEW WorldVector<double>[vNumBasFcts];
      Mesh *mesh = feSpace->getMesh();
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(mesh, -1,
					   Mesh::CALL_LEAF_EL | 
					   Mesh::FILL_COORDS);

      while (elInfo) {
	Element *el = elInfo->getElement();

	basFcts->getLocalIndices(el, feSpace->getAdmin(), localIndices);

	v->getLocalVector(el, vLocalCoeffs);

	for (int i = 0; i < numBasFcts; i++) {
	  if (vec[localIndices[i]] == nul) {
	    coords = basFcts->getCoords(i);
	    //	  for(j = 0; j < vNumBasFcts; j++) {
	    vec[localIndices[i]] += vBasFcts->evalUh(*coords, vLocalCoeffs,NULL) * factor;
	    //  }
	  }
	}
	elInfo = stack.traverseNext(elInfo);
      }

      FREE_MEMORY(localIndices, DegreeOfFreedom, numBasFcts);
      DELETE []   vLocalCoeffs;
    } else {
      ERROR_EXIT("not yet for dual traverse\n");
    }
  }


570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
  template<>
  WorldVector<DOFVector<double>*> *DOFVector<double>::getGradient(WorldVector<DOFVector<double>*> *grad) const
  {
    FUNCNAME("DOFVector<double>::getGradient()");

    int i, j, k;

    Mesh *mesh = feSpace->getMesh();

    int dim = mesh->getDim();
    int dow = Global::getGeo(WORLD);

    const BasisFunction *basFcts = feSpace->getBasisFcts();
    int nBasFcts = basFcts->getNumber();

    DOFAdmin *admin = feSpace->getAdmin();

    // define result vector
    static WorldVector<DOFVector<double>*> *result = NULL;

590
    if (grad) {
591
592
      result = grad;
    } else {
593
      if (!result) {
594
595
596
	result = NEW WorldVector<DOFVector<double>*>;
	result->set(NULL);
      }
597
598
      for (i = 0; i < dow; i++) {
	if ((*result)[i] && (*result)[i]->getFESpace() != feSpace) {
599
600
601
602
603
604
605
606
607
608
609
610
611
612
	  DELETE (*result)[i];
	  (*result)[i] = NEW DOFVector<double>(feSpace, "gradient");
	}
      }
    }

    // count number of nodes and dofs per node
    ::std::vector<int> numNodeDOFs;
    ::std::vector<int> numNodePreDOFs;
    ::std::vector<DimVec<double>*> bary;

    int numNodes = 0;
    int numDOFs = 0;

613
    for (i = 0; i < dim + 1; i++) {
614
615
616
      GeoIndex geoIndex = INDEX_OF_DIM(i, dim);
      int numPositionNodes = mesh->getGeo(geoIndex);
      int numPreDOFs = admin->getNumberOfPreDOFs(i);
617
      for (j = 0; j < numPositionNodes; j++) {
618
619
620
621
622
623
624
625
626
627
628
629
630
631
	int dofs = basFcts->getNumberOfDOFs(geoIndex);
	numNodeDOFs.push_back(dofs);
	numDOFs += dofs;
	numNodePreDOFs.push_back(numPreDOFs);
      }
      numNodes += numPositionNodes;
    }

    TEST_EXIT(numNodes == mesh->getNumberOfNodes())
      ("invalid number of nodes\n");

    TEST_EXIT(numDOFs == nBasFcts)
      ("number of dofs != number of basis functions\n");

632
    for (i = 0; i < numDOFs; i++) {
633
634
635
636
637
638
639
640
641
642
643
644
645
646
      bary.push_back(basFcts->getCoords(i));
    }

    // traverse mesh
    ::std::vector<bool> visited(getUsedSize(), false);

    TraverseStack stack;

    Flag fillFlag = Mesh::CALL_LEAF_EL | Mesh::FILL_GRD_LAMBDA;

    ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag);

    WorldVector<double> grd;

647
    while (elInfo) {
648
649
650
651
652
653
654
655

      const DegreeOfFreedom **dof = elInfo->getElement()->getDOF();

      const double *localUh = getLocalVector(elInfo->getElement(), NULL);

      const DimVec<WorldVector<double> > &grdLambda = elInfo->getGrdLambda();

      int localDOFNr = 0;
656
657
      for (i = 0; i < numNodes; i++) { // for all nodes
	for (j = 0; j < numNodeDOFs[i]; j++) { // for all dofs at this node
658
	  DegreeOfFreedom dofIndex = dof[i][numNodePreDOFs[localDOFNr] + j];
659
	  if (!visited[dofIndex]) {
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
	  
	    grd = basFcts->evalGrdUh(*(bary[localDOFNr]),
				     grdLambda, 
				     localUh, 
				     NULL);

	    for(k = 0; k < dow; k++) {
	      (*result)[k][dofIndex] = grd[k];
	    }

	    visited[dofIndex] = true;
	  }
	  localDOFNr++;
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }

    return result;
  }


  DOFVectorDOF::DOFVectorDOF() : DOFVector<DegreeOfFreedom>() {};

685

686
687
688
689
690
691
692
693
694
  void DOFVectorDOF::freeDOFContent(DegreeOfFreedom dof) {
    ::std::vector<DegreeOfFreedom>::iterator it;
    ::std::vector<DegreeOfFreedom>::iterator end = vec.end();
    DegreeOfFreedom pos;
    for(it = vec.begin(), pos = 0; it != end; ++it, ++pos) {
      if(*it == dof) *it = pos;
    }
  };

695

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
  WorldVector<DOFVector<double>*> *transform(DOFVector<WorldVector<double> > *vec,
					     WorldVector<DOFVector<double>*> *res)
  {
    FUNCNAME("transform()");

    TEST_EXIT(vec)("no vector\n");

    int i, j, dow = Global::getGeo(WORLD);

    static WorldVector<DOFVector<double>*> *result = NULL;

    if(!res && !result) {
      result = NEW WorldVector<DOFVector<double>*>;
      for(i = 0; i < dow; i++) {
	(*result)[i] = NEW DOFVector<double>(vec->getFESpace(), "transform");
      }
    }

    WorldVector<DOFVector<double>*> *r = res ? res : result;

    int vecSize = vec->getSize();
    for(i = 0; i < vecSize; i++) {
      for(j = 0; j < dow; j++) {
	(*((*r)[j]))[i] = (*vec)[i][j];
      }
    }

    return r;
  }

}