NavierStokesCahnHilliard.cc 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#include "NavierStokesCahnHilliard.h"
// #include "Views.h"
#include "SignedDistFunctors.h"
#include "PhaseFieldConvert.h"

using namespace AMDiS;

NavierStokesCahnHilliard::NavierStokesCahnHilliard(const std::string &name_, bool createProblem) :
  super(name_, createProblem),
  useMobility(false),
  doubleWell(0),
  gamma(1.0),
  eps(0.1),
  minusEps(-0.1),
  epsInv(10.0),
  minusEpsInv(-10.0),
  epsSqr(0.01),
  minusEpsSqr(-0.01),
  multiPhase(NULL),
  densityPhase(NULL),
  viscosityPhase(NULL),
  viscosity1(1.0),
  viscosity2(1.0),
  density1(1.0),
  density2(1.0),    
  refFunction(NULL),
  refinement(NULL),
  sigma(0.0),
  surfaceTension(0.0)
  {
    dow = Global::getGeo(WORLD);
  Initfile::get(name + "->viscosity1", viscosity1); // viscosity of fluid 1
  Initfile::get(name + "->viscosity2", viscosity2); // viscosity of fluid 2
  Initfile::get(name + "->density1", density1); // density of fluid 1
  Initfile::get(name + "->density2", density2); // density of fluid 2

  Initfile::get(name + "->non-linear term", nonLinTerm); 
  Initfile::get(name + "->theta", theta); 
  Initfile::get("adapt->timestep", tau); 
    
    
    Parameters::get(name + "->epsilon", eps); // interface width
    Parameters::get(name + "->sigma", sigma); 
    double a_fac;
    Parameters::get(name + "->a_factor", a_fac);
    a=1.0/sigma*sqr(eps)*a_fac* (std::max(density1,density2)/tau);
    b=1.0;
    ab=a*b;   
    surfaceTension = -sigma/eps * 3.0/2.0/sqrt(2.0) * a ;

  theta1 = 1.0-theta;
  minusTheta1 = -theta1;

  force.set(0.0);
  Initfile::get(name + "->force", force);
  
  // parameters for CH
  Parameters::get(name + "->use mobility", useMobility); // mobility
  Parameters::get(name + "->gamma", gamma); // mobility

  
  // type of double well: 0= [0,1], 1= [-1,1]
  Parameters::get(name + "->double-well type", doubleWell); 
  
  // transformation of the parameters
  minusEps = -eps;
  minus1 = -1.0;
  epsInv = 1.0/eps;
  minusEpsInv = -epsInv;
  epsSqr = sqr(eps);
  minusEpsSqr = -epsSqr*b;
  
  
}


NavierStokesCahnHilliard::~NavierStokesCahnHilliard() 
{ FUNCNAME("NavierStokesCahnHilliard::~NavierStokesCahnHilliard()");   
  delete densityPhase;
  delete viscosityPhase;
}


void NavierStokesCahnHilliard::setTime(AdaptInfo* adaptInfo) 
  {
    super::setTime(adaptInfo);
    delta = gamma*adaptInfo->getTimestep();
  }
  
  


void NavierStokesCahnHilliard::initData()
{ FUNCNAME("NavierStokes_TH_MultiPhase::initTimeInterface()");

  #ifdef HAVE_PARALLEL_DOMAIN_AMDIS
    string initFileStr = name + "->space->solver", solverType = "";
    Parameters::get(initFileStr, solverType);
    if (solverType == "petsc-nsch") {
      PetscSolverNSCH* solver = dynamic_cast<PetscSolverNSCH*>(prob->getSolver()); 
      if (solver)
      {
	solver->setChData(&eps, &delta);
	solver->setStokesData( getInvTau(), prob->getSolution(), &viscosity1, &viscosity2, &density1, &density2);
      }
    }
    #endif

  densityPhase = new DOFVector<double>(prob->getFeSpace(0), "densityPhase");
  viscosityPhase = new DOFVector<double>(prob->getFeSpace(0), "viscosityPhase");

  densityPhase->set(density1);
  viscosityPhase->set(viscosity1);
  
   if (velocity == NULL)
    velocity = new DOFVector<WorldVector<double> >(getFeSpace(0), "velocity");
 
  //fileWriter = new FileVectorWriter(name + "->velocity->output", getFeSpace()->getMesh(), velocity);

  super::initData();
};


void NavierStokesCahnHilliard::closeTimestep(AdaptInfo *adaptInfo)
{ super::closeTimestep(adaptInfo);

}

void NavierStokesCahnHilliard::initTimestep(AdaptInfo *adaptInfo)
{ FUNCNAME("NavierStokes_TH_MultiPhase::initTimestep()");
  
  super::initTimestep(adaptInfo);
  refinement->refine(2);
  LinearInterpolation1 dLI(density1, density2);
  LinearInterpolation1 vLI(viscosity1, viscosity2);
  transformDOF(prob->getSolution()->getDOFVector(dow+2), densityPhase, &dLI);
  transformDOF(prob->getSolution()->getDOFVector(dow+2), viscosityPhase, &vLI);
};



void NavierStokesCahnHilliard::solveInitialProblem(AdaptInfo *adaptInfo)
  {
    // meshFunction for klocal refinement around the interface of the phasefield-DOFVector
    refFunction = new PhaseFieldRefinement(prob->getMesh());

    if (getDoubleWellType() == 0) {
      refinement = new RefinementLevelDOF(
	prob->getFeSpace(),
	refFunction,
	prob->getSolution()->getDOFVector(dow+2)); // phaseField-DOFVector in [0,1]
    } else {
      refinement = new RefinementLevelDOF(
	prob->getFeSpace(),
	refFunction,
	new PhaseDOFView<double>(prob->getSolution()->getDOFVector(dow+2))); // phaseField-DOFVector in [-1,1]
    }

    // initial refinement
    refinement->refine(0);

    for (int i = 0; i < 3; i++) {
      solveInitialProblem2(adaptInfo); 	// update phaseField-DOFVector
      refinement->refine((i < 4 ? 4 : 10));	// do k steps of local refinement
    }

    // solve all initial problems of the problems added to the CouplingTimeInterface    
  }



void NavierStokesCahnHilliard::solveInitialProblem2(AdaptInfo *adaptInfo) 
{ FUNCNAME("NavierStokesCahnHilliard::solveInitialProblem()");

  Flag initFlag = initDataFromFile(adaptInfo);

  if (!initFlag.isSet(DATA_ADOPTED)) {
    int initialInterface = 0;
    Initfile::get(name + "->initial interface", initialInterface);
    double initialEps = eps;
    Initfile::get(name + "->initial epsilon", initialEps);

    if (initialInterface == 0) {
      /// horizontale Linie
      double a= 0.0, dir= -1.0;
      Initfile::get(name + "->line->pos", a);
      Initfile::get(name + "->line->direction", dir);
      prob->getSolution()->getDOFVector(1+3)->interpol(new Plane(a, dir));
    }
    else if (initialInterface == 1) {
      /// schraege Linie
      double theta = m_pi/4.0;
      prob->getSolution()->getDOFVector(1+3)->interpol(new PlaneRotation(0.0, theta, 1.0));
      transformDOFInterpolation(prob->getSolution()->getDOFVector(1+3),new PlaneRotation(0.0, -theta, -1.0), new AMDiS::Min<double>);
    }
    else if (initialInterface == 2) {
      /// Ellipse
      double a= 1.0, b= 1.0;
      Initfile::get(name + "->ellipse->a", a);
      Initfile::get(name + "->ellipse->b", b);
      prob->getSolution()->getDOFVector(1+3)->interpol(new Ellipse(a,b));
    }
    else if (initialInterface == 3) {
      /// zwei horizontale Linien
      double a= 0.75, b= 0.375;
      Initfile::get(name + "->lines->pos1", a);
      Initfile::get(name + "->lines->pos2", b);
      prob->getSolution()->getDOFVector(1+3)->interpol(new Plane(a, -1.0));
      transformDOFInterpolation(prob->getSolution()->getDOFVector(1+3),new Plane(b, 1.0), new AMDiS::Max<double>);
    }
    else if (initialInterface == 4) {
      /// Kreis
      double radius= 1.0, x=0, y=0;
      Initfile::get(name + "->circle->radius", radius);
      Initfile::get(name + "->circle->center_x", x);
      Initfile::get(name + "->circle->center_y", y);
      WorldVector<double> w;
      w[0]=x; w[1]=y+adaptInfo->getTime();
      prob->getSolution()->getDOFVector(1+3)->interpol(new Circle(radius, w));
    } else if (initialInterface == 5) {
      /// Rechteck
      double width = 0.5;
      double height = 0.3;
      WorldVector<double> center; center.set(0.5);
      Initfile::get(name + "->rectangle->width", width);
      Initfile::get(name + "->rectangle->height", height);
      Initfile::get(name + "->rectangle->center", center);
      prob->getSolution()->getDOFVector(1+3)->interpol(new Rectangle(width, height, center));
    }

    /// create phase-field from signed-dist-function
    if (doubleWell == 0) {
      transformDOF(prob->getSolution()->getDOFVector(1+3),
        new SignedDistToPhaseField(initialEps));
    } else {
      transformDOF(prob->getSolution()->getDOFVector(1+3),
        new SignedDistToCh(initialEps));
    }
  }
}


void NavierStokesCahnHilliard::fillOperators()
{ FUNCNAME("NavierStokesCahnHilliard::fillOperators()");
  MSG("NavierStokesCahnHilliard::fillOperators()\n");

  const FiniteElemSpace* feSpace = prob->getFeSpace(0);
 
  // c
  Operator *opChMnew = new Operator(feSpace,feSpace);
  opChMnew->addZeroOrderTerm(new Simple_ZOT);
  Operator *opChMold = new Operator(feSpace,feSpace);
  opChMold->addZeroOrderTerm(new VecAtQP_ZOT(prob->getSolution()->getDOFVector(1+3)));
  // -nabla*(grad(c))
  Operator *opChL = new Operator(feSpace,feSpace);
  opChL->addSecondOrderTerm(new Simple_SOT);
  
  // div(M(c)grad(mu)), with M(c)=gamma/4*(c^2-1)^2
  Operator *opChLM = new Operator(feSpace,feSpace);
  opChLM->addSecondOrderTerm(new Simple_SOT(gamma*ab));
  
  // -2*c_old^3 + 3/2*c_old^2
  Operator *opChMPowExpl = new Operator(feSpace,feSpace);
  opChMPowExpl->addZeroOrderTerm(new VecAtQP_ZOT(
    prob->getSolution()->getDOFVector(1+3),
    new Pow3Functor(-2.0)));
  if (doubleWell == 0) {
    opChMPowExpl->addZeroOrderTerm(new VecAtQP_ZOT(
      prob->getSolution()->getDOFVector(1+3),
      new Pow2Functor(3.0/2.0)));
  }

  // -3*c_old^2 * c
  Operator *opChMPowImpl = new Operator(feSpace,feSpace);
  opChMPowImpl->addZeroOrderTerm(new VecAtQP_ZOT(
    prob->getSolution()->getDOFVector(1+3),
    new Pow2Functor(-3.0)));
  if (doubleWell == 0) {
    opChMPowImpl->addZeroOrderTerm(new VecAtQP_ZOT(
      prob->getSolution()->getDOFVector(1+3),
      new AMDiS::Factor<double>(3.0)));
    opChMPowImpl->addZeroOrderTerm(new Simple_ZOT(-0.5));
  } else {
    opChMPowImpl->addZeroOrderTerm(new Simple_ZOT(1.0));
  }

  // mu + eps^2*laplace(c) + c - 3*(c_old^2)*c = -2*c_old^3 [+ BC]
  // ----------------------------------------------------------------------
  prob->addMatrixOperator(*opChMnew,0+3,0+3, &ab);              /// < phi*mu , psi >
  
  prob->addMatrixOperator(*opChMPowImpl,0+3,1+3, &b);          /// < -3*phi*c*c_old^2 , psi >
  prob->addMatrixOperator(*opChL,0+3,1+3, &minusEpsSqr);   /// < -eps^2*phi*grad(c) , grad(psi) >
  // . . . vectorOperators . . . . . . . . . . . . . . .
  prob->addVectorOperator(*opChMPowExpl,0+3, &b);            /// < -2*phi*c_old^3 , psi >

//   setAssembleMatrixOnlyOnce_butTimestepChange(0,1);
  
  // dt(c) = laplace(mu) - u*grad(c)
  // -----------------------------------
  prob->addMatrixOperator(*opChMnew,1+3,1+3, &b); /// < phi*c/tau , psi >
  prob->addMatrixOperator(*opChLM,1+3,0+3, getTau());                /// < phi*grad(mu) , grad(psi) >
  // . . . vectorOperators . . . . . . . . . . . . . . .
  prob->addVectorOperator(*opChMold,1+3, &b );   /// < phi*c^old/tau , psi >
  
  /**/
  
  
  /// Navier-Stokes part
    
  WorldVector<DOFVector<double>* > vel;
  for (unsigned i = 0; i < dow; i++){
    vel[i]= prob->getSolution()->getDOFVector(i+2); 
  }


  // fill operators for prob
  for (unsigned i = 0; i < dow; ++i) {
    
    /// < (1/tau)*rho*u'_i , psi >
    Operator *opTime = new Operator(getFeSpace(i), getFeSpace(i));
    if (density1==density2)
      opTime->addTerm(new Simple_ZOT(density1));  
    else
      opTime->addTerm(new VecAtQP_ZOT(densityPhase, NULL));
    opTime->setUhOld(prob->getSolution()->getDOFVector(i));
    prob->addMatrixOperator(*opTime, i, i, getInvTau(), getInvTau());    
    prob->addVectorOperator(*opTime, i, getInvTau(), getInvTau());    
    
    
 
    /// < u^old*grad(u_i^old) , psi >
/*    Operator *opUGradU0 = new Operator(getFeSpace(i),getFeSpace(i));
    if (density1==density2)
        opUGradU0->addTerm(new WorldVec_FOT(vel, -1.0), GRD_PHI);
    else
        opUGradU0->addTerm(new WorldVecPhase_FOT(densityPhase, vel, -1.0), GRD_PHI);
    opUGradU0->setUhOld(prob->getSolution()->getDOFVector(i));
    if (nonLinTerm == 0) {
      prob->addVectorOperator(*opUGradU0, i);
    } else {
      prob->addVectorOperator(*opUGradU0, i, &theta1, &theta1);
    }

    if (nonLinTerm == 1) {
      /// < u'*grad(u_i^old) , psi >
      for (unsigned j = 2; j < 2+dow; ++j) {
        Operator *opUGradU1 = new Operator(getFeSpace(i),getFeSpace(i));
	if (density1==density2)
	  opUGradU1->addTerm(new PartialDerivative_ZOT(prob->getSolution()->getDOFVector(i), j-2));
	else
	  opUGradU1->addTerm(new VecAndPartialDerivative_ZOT(     densityPhase,    prob->getSolution()->getDOFVector(i), j-2));
        prob->addMatrixOperator(*opUGradU1, i, j, &theta, &theta);
      }
    } else if (nonLinTerm == 2) {
      /// < u^old*grad(u'_i) , psi >
*/   for(unsigned j = 2; j < 2+dow; ++j) {
        Operator *opUGradU2 = new Operator(getFeSpace(i),getFeSpace(i));
        opUGradU2->addTerm(new Vec2ProductPartial_FOT(   densityPhase,    prob->getSolution()->getDOFVector(j-2), j-2), GRD_PHI);
        prob->addMatrixOperator(*opUGradU2, i, i);
      }
    
  /**/
    /// Diffusion-Operator (including Stress-Tensor for space-dependent viscosity
    Operator *opLaplaceUi = new Operator(getFeSpace(i), getFeSpace(i));
    opLaplaceUi->addTerm(new VecAtQP_SOT(viscosityPhase, NULL));
    prob->addMatrixOperator(*opLaplaceUi, i, i);  
  
    /// < p , d_i(psi) >
    Operator *opGradP = new Operator(getFeSpace(i),getFeSpace(2));
    opGradP->addTerm(new PartialDerivative_FOT(i, -1.0), GRD_PSI);
    prob->addMatrixOperator(*opGradP, i, 2);
    
    /// external force, i.e. gravitational force
    if (force[i]*force[i] > DBL_TOL) {
      Operator *opForce = new Operator(getFeSpace(i), getFeSpace(i));
      opForce->addZeroOrderTerm(new VecAtQP_ZOT(densityPhase, new Force(force[i])));
      prob->addVectorOperator(*opForce, i);
    }
  
    /// < d_i(u'_i) , psi >
    Operator *opDivU = new Operator(getFeSpace(2),getFeSpace(i));
    opDivU->addTerm(new PartialDerivative_FOT(i), GRD_PHI);
    prob->addMatrixOperator(*opDivU, 2, i);
    
    
    
     ///coupling Operators 
      Operator *opNuGradC = new Operator(getFeSpace(i), getFeSpace(dow+1));
      opNuGradC->addTerm(new PartialDerivative_ZOT(prob->getSolution()->getDOFVector(dow+2), i));
      prob->addMatrixOperator(opNuGradC, i, dow+1, &surfaceTension, &surfaceTension);
    
      Operator *opVGradC = new Operator(getFeSpace(dow+2), getFeSpace(i));
      opVGradC->addTerm(new PartialDerivative_ZOT(prob->getSolution()->getDOFVector(dow+2), i, b));
      prob->addMatrixOperator(opVGradC, dow+2, i,  getTau());
      /**/
     
  }
  
  /**/
};


void NavierStokesCahnHilliard::addLaplaceTerm(int i)
{ FUNCNAME("NavierStokes_TH_MultiPhase::addLaplaceTerm()");

  /// < alpha*[grad(u)+grad(u)^t] , grad(psi) >
  if (viscosity1!=viscosity2) {
    for (unsigned j = 0; j < dow; ++j) {
      Operator *opLaplaceUi1 = new Operator(getFeSpace(i), getFeSpace(j));
      opLaplaceUi1->addTerm(new VecAtQP_IJ_SOT(  viscosityPhase, NULL, j, i));      
      prob->addMatrixOperator(*opLaplaceUi1, i, j);      
    }
  }/**/
  
  /// < alpha*grad(u'_i) , grad(psi) >
  
 
};