MeshDistributor.h 23.4 KB
Newer Older
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


20

21
/** \file MeshDistributor.h */
22

23
24
#ifndef AMDIS_MESHDISTRIBUTOR_H
#define AMDIS_MESHDISTRIBUTOR_H
25
26


Thomas Witkowski's avatar
Thomas Witkowski committed
27
#include <mpi.h>
28
#include "parallel/DofComm.h"
29
#include "parallel/ElementObjectData.h"
30
#include "parallel/ParallelTypes.h"
31
#include "parallel/MeshPartitioner.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
32
#include "parallel/InteriorBoundary.h"
33
#include "parallel/PeriodicMap.h"
34
#include "parallel/StdMpi.h"
35
#include "AMDiS_fwd.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
36
#include "Global.h"
37
38
#include "ProblemTimeInterface.h"
#include "ProblemIterationInterface.h"
39
#include "FiniteElemSpace.h"
40
#include "Serializer.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
41
#include "BoundaryManager.h"
42
#include "SystemVector.h"
43

44
namespace AMDiS {
45
46

  using namespace std;
Thomas Witkowski's avatar
Thomas Witkowski committed
47
48
49
50


  struct BoundaryDofInfo
  {
51
    map<GeoIndex, DofContainerSet> geoDofs;
Thomas Witkowski's avatar
Thomas Witkowski committed
52
53
  };

54
55
56
57
58
59
60
61
62
63
64
65

  struct DofData
  {
    /// Number of DOFs in the rank mesh.
    int nRankDofs;

    /// Is the index of the first global DOF index, which is owned by the rank.
    int rStartDofs;

    /// Number of DOFs in the whole domain.
    int nOverallDofs;

66
67
68
    /// Maps all DOFs in ranks partition to a bool value. If it is true, the DOF 
    /// is owned by the rank. Otherwise, its an interior boundary DOF that is 
    /// owned by another rank.
69
70
71
    DofIndexToBool isRankDof;

    /// Maps local to global dof indices.
72
    DofMapping mapDofToGlobal;
73
74

    /// Maps local dof indices to real dof indices.
75
    DofMapping mapLocalToDof;
76
  };
77
78


79
  class MeshDistributor
80
  {
81
  private:
82
    MeshDistributor();
83
	          
84
    virtual ~MeshDistributor() {}
85

86
  public:
87
    void initParallelization();
88

89
    void exitParallelization();
90

91
92
93
    /// Adds a DOFVector to the set of \ref interchangeVecs. Thus, this vector 
    /// will be automatically interchanged between ranks when mesh is 
    /// repartitioned.
94
95
96
97
98
    void addInterchangeVector(DOFVector<double> *vec)
    {
      interchangeVectors.push_back(vec);
    }

99
100
101
102
103
104
105
    /// Adds all DOFVectors of a SystemVector to \ref interchangeVecs.
    void addInterchangeVector(SystemVector *vec)
    {
      for (int i = 0; i < vec->getSize(); i++)
	interchangeVectors.push_back(vec->getDOFVector(i));
    }
    
106
    /** \brief
107
108
109
110
111
     * This function checks if the mesh has changed on at least on rank. In 
     * this case, the interior boundaries are adapted on all ranks such that 
     * they fit together on all ranks. Furthermore the function 
     * \ref updateLocalGlobalNumbering() is called to update the DOF numberings 
     * and mappings on all rank due to the new mesh structure.
112
     *
113
114
115
116
117
     * \param[in]  tryRepartition   If this parameter is true, repartitioning 
     *                              may be done. This depends on several other 
     *                              parameters. If the parameter is false, the 
     *                              mesh is only checked and adapted but never 
     *                              repartitioned.
118
     */
119
    void checkMeshChange(bool tryRepartition = true);
120

121
122
123
124
125
126
127
128
129
130
    /** \brief
     * Checks if is required to repartition the mesh. If this is the case, a new
     * partition will be created and the mesh will be redistributed between the
     * ranks.
     */
    void repartitionMesh();
    
    /// Calculates the imbalancing factor and prints it to screen.
    void printImbalanceFactor();

131
    /** \brief
132
133
134
135
     * Test, if the mesh consists of macro elements only. The mesh partitioning 
     * of the parallelization works for macro meshes only and would fail, if the 
     * mesh is already refined in some way. Therefore, this function will exit
     * the program if it finds a non macro element in the mesh.
136
137
     */
    void testForMacroMesh();
138

139
140
    /// Set for each element on the partitioning level the number of 
    /// leaf elements.
141
    void setInitialElementWeights();
142

143
    inline virtual string getName() 
144
145
146
    { 
      return name; 
    }
147

Thomas Witkowski's avatar
Thomas Witkowski committed
148
149
150
151
152
    inline Mesh* getMesh()
    {
      return mesh;
    }

153
154
    /// Returns an FE space from \ref feSpaces.
    inline const FiniteElemSpace* getFeSpace(unsigned int i = 0)
155
    {
156
157
158
159
160
      FUNCNAME("MeshDistributor::getFeSpace()");

      TEST_EXIT_DBG(i < feSpaces.size())("Should not happen!\n");

      return feSpaces[i];
161
    }
162
163
164
165
166
167
168

    /// Returns all FE spaces, thus \ref feSpaces.
    inline vector<const FiniteElemSpace*>& getFeSpaces()
    {
      return feSpaces;
    }

169
    /// Returns the number of DOFs in rank's domain for a given FE space.
170
    inline int getNumberRankDofs(const FiniteElemSpace *feSpace) 
171
    {
172
173
174
175
      FUNCNAME("MeshDistributor::getNumberRankDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

176
      return dofFeData[feSpace].nRankDofs;
177
    }
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    /// Returns the number of DOFs in rank's domain for a set of FE spaces.
    inline int getNumberRankDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getNumberRankDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");
	result += dofFeData[feSpaces[i]].nRankDofs;
      }

      return result;
    }
    
    /// Returns the first global DOF index of an FE space, owned by rank.
194
    inline int getStartDofs(const FiniteElemSpace *feSpace)
195
    {
196
197
198
199
      FUNCNAME("MeshDistributor::getStartDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

200
      return dofFeData[feSpace].rStartDofs;
201
202
    }

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    /// Returns the first global DOF index for a set of FE spaces, owned by rank.
    inline int getStartDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getStartDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");

	result += dofFeData[feSpaces[i]].rStartDofs;
      }

      return result;
    }

    /// Returns the global number of DOFs for a given FE space.
219
    inline int getNumberOverallDofs(const FiniteElemSpace *feSpace)
220
    {
221
222
223
224
      FUNCNAME("MeshDistributor::getNumberOverallDofs()");

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

225
      return dofFeData[feSpace].nOverallDofs;
226
    }
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    /// Returns the global number of DOFs for a set of FE spaces.
    inline int getNumberOverallDofs(vector<const FiniteElemSpace*>& feSpaces)
    {
      FUNCNAME("MeshDistributor::getNumberOverallDofs()");

      int result = 0;
      for (unsigned int i = 0; i < feSpaces.size(); i++) {
	TEST_EXIT_DBG(dofFeData.count(feSpaces[i]))("Should not happen!\n");

	result += dofFeData[feSpaces[i]].nOverallDofs;
      }

      return result;
    }

243
    inline DofMapping& getMapDofToGlobal(const FiniteElemSpace *feSpace)
Thomas Witkowski's avatar
Thomas Witkowski committed
244
    {
245
      FUNCNAME("MeshDistributor::getMapDofToGlobal()");
246
247
248

      TEST_EXIT_DBG(dofFeData.count(feSpace))("Should not happen!\n");

249
      return dofFeData[feSpace].mapDofToGlobal;
Thomas Witkowski's avatar
Thomas Witkowski committed
250
251
    }

252
    /// Maps a local DOF to its global index.
253
254
    inline DegreeOfFreedom mapDofToGlobal(const FiniteElemSpace *feSpace,
					  DegreeOfFreedom dof)
255
    {
256
      FUNCNAME("MeshDistributor::mapDofToGlobal()");
257
258
259
260

      TEST_EXIT_DBG(dofFeData.count(feSpace))
	("No DOF data for FE space at addr %p!\n", feSpace);

261
      return dofFeData[feSpace].mapDofToGlobal[dof];
262
    }
263

264
265
266
267
    /// Returns for a global index the DOF index in rank's subdomain. As there
    /// is no direct data structure that stores this information, we have to
    /// search for it in \ref dofFeData.mapDofToGlobal. This is not very
    /// efficient and this function should thus be used for debugging only.
268
269
    DegreeOfFreedom mapGlobalToLocal(const FiniteElemSpace *feSpace,
				     DegreeOfFreedom dof);
270

271
    /// Maps a local DOF to its local index.
272
273
    inline DegreeOfFreedom mapLocalToDof(const FiniteElemSpace *feSpace,
					 DegreeOfFreedom dof)
274
    {
275
      FUNCNAME("MeshDistributor::mapLocalToDof()");
276
277
278
279

      TEST_EXIT_DBG(dofFeData.count(feSpace))
	("No DOF data for FE space at addr %p!\n", feSpace);

280
      return dofFeData[feSpace].mapLocalToDof[dof];
281
282
    }

283
284
    /// Returns the periodic mapping handler, \ref periodicMap.
    inline PeriodicMap& getPeriodicMap()
Thomas Witkowski's avatar
Thomas Witkowski committed
285
    {
286
      return periodicMap;
287
288
    }

289
    DofComm& getSendDofs()
290
291
292
293
    {
      return sendDofs;
    }

294
    DofComm& getRecvDofs()
295
296
297
298
    {
      return recvDofs;
    }

299
300
301
302
303
    DofComm& getPeriodicDofs()
    {
      return periodicDofs;
    }

304
305
    /// Return true, if the given DOF is owned by the rank. If false, the DOF
    /// is in rank's partition, but is owned by some other rank.
306
    inline bool getIsRankDof(const FiniteElemSpace *feSpace, DegreeOfFreedom dof)
307
    {
308
309
      if (dofFeData[feSpace].isRankDof.count(dof))
	return dofFeData[feSpace].isRankDof[dof];
310
311

      return false;
312
    }
313

314
    inline DofIndexToBool& getIsRankDof(const FiniteElemSpace *feSpace)
315
    {
316
      return dofFeData[feSpace].isRankDof;
317
318
    }

319
    inline long getLastMeshChangeIndex()
320
    {
321
      return lastMeshChangeIndex;
322
    }
323

324
    inline int getMpiRank()
325
    {
326
      return mpiRank;
327
    }
328

Thomas Witkowski's avatar
Thomas Witkowski committed
329
330
331
332
333
    inline int getMpiSize()
    {
      return mpiSize;
    }

334
335
336
    inline MPI::Intracomm& getMpiComm()
    {
      return mpiComm;
337
338
    }

339
340
    /// Creates a set of all DOFs that are on interior boundaries of rank's
    /// domain. Thus, it creates the union of \ref sendDofs and \ref recvDofs.
341
342
    void createBoundaryDofs(const FiniteElemSpace *feSpace,
			    std::set<DegreeOfFreedom> &boundaryDofs);
343

344
    // Writes all data of this object to an output stream.
345
    void serialize(ostream &out);
346

347
    // Reads the object data from an input stream.
348
    void deserialize(istream &in);
349
350

    /** \brief
351
352
353
354
     * This function must be used if the values of a DOFVector must be 
     * synchronised over all ranks. That means, that each rank sends the 
     * values of the DOFs, which are owned by the rank and lie on an interior 
     * bounday, to all other ranks also having these DOFs.
355
     *
356
357
358
     * This function must be used, for example, after the lineary system is 
     * solved, or after the DOFVector is set by some user defined functions, 
     * e.g., initial solution functions.
359
     */    
360
361
362
363
364
    template<typename T>
    void synchVector(DOFVector<T> &vec) 
    {
      StdMpi<vector<T> > stdMpi(mpiComm);

365
366
      const FiniteElemSpace *fe = vec.getFeSpace();

367
      for (DofComm::Iterator it(sendDofs, fe); !it.end(); it.nextRank()) {
368
	vector<T> dofs;
369
	dofs.reserve(it.getDofs().size());
370
	
371
372
	for (; !it.endDofIter(); it.nextDof())
	  dofs.push_back(vec[it.getDofIndex()]);
373
	
374
	stdMpi.send(it.getRank(), dofs);
375
      }
376
377
378
379
	     
      for (DofComm::Iterator it(recvDofs); !it.end(); it.nextRank())
        stdMpi.recv(it.getRank());
	     
380
      stdMpi.startCommunication();
381
382
383
384
385

      for (DofComm::Iterator it(recvDofs, fe); !it.end(); it.nextRank())
	for (; !it.endDofIter(); it.nextDof())
	  vec[it.getDofIndex()] = 
	     stdMpi.getRecvData(it.getRank())[it.getDofCounter()];
386
387
    }
    
388
    /** \brief
389
390
391
     * Works in the same way as the function above defined for DOFVectors. Due
     * to performance, this function does not call \ref synchVector for each 
     * DOFVector, but instead sends all values of all DOFVectors all at once.
392
393
394
     */
    void synchVector(SystemVector &vec);

395
396
    void check3dValidMesh();

Thomas Witkowski's avatar
Thomas Witkowski committed
397
398
399
400
401
    void setBoundaryDofRequirement(Flag flag)
    {
      createBoundaryDofFlag = flag;
    }

402
    BoundaryDofInfo& getBoundaryDofInfo(const FiniteElemSpace *feSpace)
403
    {
404
      return boundaryDofInfo[feSpace];
405
406
    }

407
408
    void getAllBoundaryDofs(const FiniteElemSpace *feSpace,
			    DofContainer& dofs);
409

410
411
412
413
414
415

  public:
    /// Adds a stationary problem to the global mesh distributor objects.
    static void addProblemStatGlobal(ProblemStatSeq *probStat);

    
416
  protected:
417
418
    void addProblemStat(ProblemStatSeq *probStat);

419
420
    /// Determines the interior boundaries, i.e. boundaries between ranks, and
    /// stores all information about them in \ref interiorBoundary.
421
    void createInteriorBoundaryInfo();
422

Thomas Witkowski's avatar
Thomas Witkowski committed
423
424
425
426
427
    void updateInteriorBoundaryInfo();

    void createMeshElementData();

    void createBoundaryData();
Thomas Witkowski's avatar
Thomas Witkowski committed
428

Thomas Witkowski's avatar
Thomas Witkowski committed
429
430
    void createBoundaryDofs();

431
432
    void createBoundaryDofs(const FiniteElemSpace *feSpace);

433
434
    /// Removes all macro elements from the mesh that are not part of ranks 
    /// partition.
435
436
    void removeMacroElements();

437
438
    void updateLocalGlobalNumbering();

439
440
    /// Updates the local and global DOF numbering after the mesh has been 
    /// changed.
441
    void updateLocalGlobalNumbering(const FiniteElemSpace *feSpace);
442

443
444
445
446
    /// Calls \ref createPeriodicMap(feSpace) for all FE spaces that are
    /// handled by the mesh distributor.
    void createPeriodicMap();

447
    /** \brief
448
449
450
451
     * Creates, for a specific FE space, to all DOFs in rank's partition that 
     * are on a periodic boundary the mapping from dof index to the other 
     * periodic dof indices. This information is stored in \ref periodicDofMap.
     */    
452
    void createPeriodicMap(const FiniteElemSpace *feSpace);
453

454
455
456
457
458
459
460
461
    /** \brief
     * This function is called only once during the initialization when the
     * whole macro mesh is available on all cores. It copies the pointers of all
     * macro elements to \ref allMacroElements and stores all neighbour 
     * information based on macro element indices (and not pointer based) in 
     * \ref macroElementNeighbours. These information are then used to 
     * reconstruct macro elements during mesh redistribution.
     */
462
463
    void createMacroElementInfo();

464
465
    void updateMacroElementInfo();

466
    /** \brief
467
468
469
470
471
472
     * Checks for all given interior boundaries if the elements fit together on
     * both sides of the boundaries. If this is not the case, the mesh is 
     * adapted. Because refinement of a certain element may forces the 
     * refinement of other elements, it is not guaranteed that all rank's meshes
     * fit together after this function terminates. Hence, it must be called 
     * until a stable mesh refinement is reached.
473
     *
474
475
     * \param[in] allBound   Defines a map from rank to interior boundaries 
     *                       which should be checked.
476
     *
477
478
479
     * \return    If the mesh has  been changed by this function, it returns 
     *            true. Otherwise, it returns false, i.e., the given interior 
     *            boundaries fit together on both sides.
480
481
     */
    bool checkAndAdaptBoundary(RankToBoundMap &allBound);
482
  
483
484
    /// Sets \ref isRankDof to all matrices and rhs vectors in a given 
    /// stationary problem.
485
    void setRankDofs(ProblemStatSeq *probStat);
486

487
488
    /// Sets \ref isRankDof to all matrices and rhs vectors in all 
    /// stationary problems.
489
490
    void setRankDofs();

491
492
493
494
    /// Removes all periodic boundary condition information from all matrices and
    /// vectors of all stationary problems and from the mesh itself.
    void removePeriodicBoundaryConditions();

Thomas Witkowski's avatar
Thomas Witkowski committed
495
    // Removes all periodic boundaries from a given boundary map.
496
    void removePeriodicBoundaryConditions(BoundaryIndexMap& boundaryMap);
Thomas Witkowski's avatar
Thomas Witkowski committed
497

498
    /// Writes a vector of dof pointers to an output stream.
499
    void serialize(ostream &out, DofContainer &data);
500

501
502
503
504
    /// Writes a \ref RankToDofContainer to an output stream.
    void serialize(ostream &out, 
		   map<int, map<const FiniteElemSpace*, DofContainer> > &data);

505
    /// Reads a vector of dof pointers from an input stream.
506
507
    void deserialize(istream &in, DofContainer &data,
		     map<int, const DegreeOfFreedom*> &dofMap);
508
509

    /// Reads a \ref RankToDofContainer from an input stream.
510
511
512
    void deserialize(istream &in, 
		     map<int, map<const FiniteElemSpace*, DofContainer> > &data,
		     map<const FiniteElemSpace*, map<int, const DegreeOfFreedom*> > &dofMap);
513
514
515

    /// Writes a mapping from dof pointers to some values to an output stream.
    template<typename T>
516
    void serialize(ostream &out, map<const DegreeOfFreedom*, T> &data)
517
    {
518
519
      FUNCNAME("ParallelDomainBase::serialize()");

520
      int mapSize = data.size();
521
      SerUtil::serialize(out, mapSize);
522
      for (typename map<const DegreeOfFreedom*, T>::iterator it = data.begin();
523
524
525
	   it != data.end(); ++it) {
	int v1 = (*(it->first));
	T v2 = it->second;
526
527
	SerUtil::serialize(out, v1);
	SerUtil::serialize(out, v2);
528
529
530
531
532
      }
    }

    /// Reads a mapping from dof pointer to some values from an input stream.
    template<typename T>
533
534
    void deserialize(istream &in, map<const DegreeOfFreedom*, T> &data,
		     map<int, const DegreeOfFreedom*> &dofMap)
535
    {
536
537
      FUNCNAME("ParallelDomainBase::deserialize()");

538
      int mapSize = 0;
539
      SerUtil::deserialize(in, mapSize);
540
541
542
      for (int i = 0; i < mapSize; i++) {
	int v1 = 0;
	T v2;
543
544
	SerUtil::deserialize(in, v1);
	SerUtil::deserialize(in, v2);
545
546
547

	TEST_EXIT_DBG(dofMap.count(v1) != 0)("Cannot find DOF %d in map!\n", v1);

548
549
550
	data[dofMap[v1]] = v2;
      }
    }
551

552
  protected:
553
554
    /// List of all stationary problems that are managed by this mesh 
    /// distributor.
555
    vector<ProblemStatSeq*> problemStat;
Thomas Witkowski's avatar
Thomas Witkowski committed
556

557
558
559
    /// If true, the mesh distributor is already initialized;
    bool initialized;

560
561
562
563
564
565
    /// The rank of the current process.
    int mpiRank;

    /// Overall number of processes.
    int mpiSize;

566
567
    /// MPI communicator collected all processes, which should be used for
    /// calculation. The Debug procces is not included in this communicator.
568
569
570
    MPI::Intracomm mpiComm;

    /// Name of the problem (as used in the init files)
571
    string name;
572

573
574
    /// Finite element spaces of the problem.
    vector<const FiniteElemSpace*> feSpaces;
575

576
577
578
    /// Mesh of the problem.
    Mesh *mesh;

579
    /** \brief
580
581
582
     * A refinement manager that should be used on the mesh. It is used to 
     * refine elements at interior boundaries in order to fit together with 
     * elements on the other side of the interior boundary.
583
584
585
     */    
    RefinementManager *refineManager;

586
587
588
    /// Info level.
    int info;

589
590
    /// Pointer to a mesh partitioner that is used to partition the mesh to 
    /// the ranks.
591
    MeshPartitioner *partitioner;
592

593
594
    /// Weights for the elements, i.e., the number of leaf elements within 
    /// this element.
595
    map<int, double> elemWeights;
596
597

    /** \brief
598
599
     * Stores to every macro element index the number of the rank that owns this
     * macro element.
600
     */
601
    map<int, int> partitionMap;
602

603
    map<const FiniteElemSpace*, DofData> dofFeData;
604

605
606
    /// Data structure to store all sub-objects of all elements of the 
    /// macro mesh.
Thomas Witkowski's avatar
Thomas Witkowski committed
607
608
    ElementObjects elObjects;

609
    /// Maps to each macro element index a pointer to the corresponding element.
610
    map<int, Element*> macroElIndexMap;
Thomas Witkowski's avatar
Thomas Witkowski committed
611
    
612
    /// Maps to each macro element index the type of this element.
613
    map<int, int> macroElIndexTypeMap;
Thomas Witkowski's avatar
Thomas Witkowski committed
614

Thomas Witkowski's avatar
Thomas Witkowski committed
615
    /** \brief 
616
617
618
619
     * Defines the interior boundaries of the domain that result from 
     * partitioning the whole mesh. Contains only the boundaries, which are 
     * owned by the rank, i.e., the object gives for every neighbour rank i 
     * the boundaries this rank owns and shares with rank i.
Thomas Witkowski's avatar
Thomas Witkowski committed
620
621
622
623
     */
    InteriorBoundary myIntBoundary;
    
    /** \brief
624
625
626
627
     * Defines the interior boundaries of the domain that result from 
     * partitioning the whole mesh. Contains only the boundaries, which are 
     * not owned by the rank, i.e., the object gives for every neighbour rank 
     * i the boundaries that are owned by rank i and are shared with this rank.
Thomas Witkowski's avatar
Thomas Witkowski committed
628
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
629
    InteriorBoundary otherIntBoundary;
Thomas Witkowski's avatar
Thomas Witkowski committed
630

631
    /** \brief
632
633
     * Defines the periodic boundaries with other ranks. Periodic boundaries
     * have no owner, as it is the case of interior boundaries.
634
635
636
     */
    InteriorBoundary periodicBoundary;

637
    /** \brief
638
639
     * This map contains for each rank the list of DOFs the current rank must 
     * send to exchange solution DOFs at the interior boundaries.
640
     */
641
    DofComm sendDofs;
642
643

    /** \brief
644
645
646
     * This map contains on each rank the list of DOFs from which the current 
     * rank will receive DOF values (i.e., this are all DOFs at an interior 
     * boundary). The DOF indices are given in rank's local numbering.
647
     */
648
    DofComm recvDofs;
649

650
651
652
653
654
655
656
657
    /** \brief
     * This map contains on each rank a list of DOFs along the interior bound-
     * aries to communicate with other ranks. The DOF indices are given in rank's
     * local numbering. Periodic boundaries within one subdomain are not 
     * considered here. 
     */
    DofComm periodicDofs;

658
    PeriodicMap periodicMap;
659

660
661
662
663
    /// This set of values must be interchanged between ranks when the mesh is 
    /// repartitioned.
    vector<DOFVector<double>*> interchangeVectors;
		        
664
665
666
    /** \brief
     * If the problem definition has been read from a serialization file, this 
     * variable is true, otherwise it is false. This variable is used to stop the
667
668
     * initialization function, if the problem definition has already been read
     * from a serialization file.
669
670
     */
    bool deserialized;
671

672
673
674
    /// Denotes whether there exists a filewriter for this object.
    bool writeSerializationFile;

675
676
677
    /// If true, it is possible to repartition the mesh during computations.
    bool repartitioningAllowed;

678
679
    /// Stores the number of mesh changes that must lie in between to 
    /// repartitionings.
680
681
    int repartitionIthChange;

682
683
    /// Counts the number of mesh changes after the last mesh repartitioning 
    /// was done.
684
    int nMeshChangesAfterLastRepartitioning;
685

686
687
688
    /// Countes the number of mesh repartitions that were done. Till now, this 
    /// variable is used only for debug outputs.
    int repartitioningCounter;
689

690
    /// Directory name where all debug output files should be written to.
691
    string debugOutputDir;
692

693
    /** \brief
694
695
     * Stores the mesh change index. This is used to recognize changes in the
     * mesh structure (e.g. through refinement or coarsening managers).
696
697
     */
    long lastMeshChangeIndex;
698

699
700
701
702
    /// Stores for all macro elements of the original macro mesh the
    /// neighbourhood information based on element indices. Thus, each macro
    /// element index is mapped to a vector containing all indices of 
    /// neighbouring macro elements.
703
    map<int, vector<int> > macroElementNeighbours;
704

705
706
    /// Store all macro elements of the overall mesh, i.e., before the
    /// mesh is redistributed for the first time.
707
    vector<MacroElement*> allMacroElements;
708

Thomas Witkowski's avatar
Thomas Witkowski committed
709
710
    Flag createBoundaryDofFlag;

711
    map<const FiniteElemSpace*, BoundaryDofInfo> boundaryDofInfo;
712

Thomas Witkowski's avatar
Thomas Witkowski committed
713
  public:
714
715
716
    /// The boundary DOFs are sorted by subobject entities, i.e., first all
    /// face DOFs, edge DOFs and to the last vertex DOFs will be set to
    /// communication structure vectors, \ref sendDofs and \ref recvDofs.
Thomas Witkowski's avatar
Thomas Witkowski committed
717
718
    static const Flag BOUNDARY_SUBOBJ_SORTED;

719
720
721
722
723
724
725
726
727
    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will send to other ranks (thus, rank 
    /// owned DOFs.
    static const Flag BOUNDARY_FILL_INFO_SEND_DOFS;

    /// When boundary DOFs are created, \ref boundaryDofInfo is filled for
    /// all DOFs that this rank will receive from other ranks (thus, DOFs
    /// that are owned by another rank).
    static const Flag BOUNDARY_FILL_INFO_RECV_DOFS;
Thomas Witkowski's avatar
Thomas Witkowski committed
728

729
730
    static MeshDistributor *globalMeshDistributor;

731
    friend class ParallelDebug;
732
733
734
  };
}

735
#endif // AMDIS_MESHDISTRIBUTOR_H