Quadrature.h 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Quadrature.h */

#ifndef AMDIS_QUADRATURE_H
#define AMDIS_QUADRATURE_H

#include "BasisFunction.h"
#include "Flag.h"
#include "MemoryManager.h"
#include "FixVec.h"
#include <list>

namespace AMDiS {

  template<typename T> class WorldVector;
  template<typename T> class DimVec;
  template<typename T> class VectorOfFixVecs;
  template<typename T> class MatrixOfFixVecs;

  // ============================================================================
  // ===== class Quadrature =====================================================
  // ============================================================================

  /** 
   * \ingroup Assembler
   *
   * \brief
   * For the assemblage of the system matrix and right hand side vector of the 
   * linear system, we have to compute integrals, for example: 
   * \f[ \int_{\Omega} f(x)\varphi_i(x) dx \f]
   * For general data A, b, c, and f, these integrals can not be calculated 
   * exactly. Quadrature formulas have to be used in order to calculate the 
   * integrals approximately. Numerical integration in finite element methods is
   * done by looping over all grid elements and using a quadrature formula on 
   * each element.
   */
  class Quadrature
  {
  public:
    MEMORY_MANAGED(Quadrature);

  protected:
    /** \brief
     * Avoids call of default constructor
     */
    Quadrature();

    /** \brief
     * Constructs a Quadrature with name name_ of degree degree_ for dim dim_.
     * The Quadrature has n_points_ quadrature points with barycentric 
     * coordinates lambda_ and weights w_. The constructor is protected because
     * access to a Quadrature should be done via \ref provideQuadrature.
     */
    Quadrature(const char* name_,
73
74
75
	       int degree_,
	       int dim_,
	       int n_points_,
76
	       VectorOfFixVecs<DimVec<double> > *lambda_,
77
	       double* w_)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
      : name(name_),
	degree(degree_),
	dim(dim_),
	n_points(n_points_),
	lambda(lambda_),
	w(w_) 
    {};

  public:
    /** \brief
     * Copy constructor
     */
    Quadrature(const Quadrature&);

92
93
94
95
96
    /** \brief
     * Destructor
     */
    ~Quadrature();

97
    /** \brief
Thomas Witkowski's avatar
Thomas Witkowski committed
98
     * Returns a Quadrature for dimension dim exact for degree degree.
99
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
100
    static Quadrature *provideQuadrature(int dim, int degree);
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    /** \brief
     * Approximates an integral by the numerical quadrature described by quad;
     * f is a pointer to an AbstractFunction to be integrated, evaluated in 
     * barycentric coordinates; the return value is 
     * \f[ \sum_{k = 0}^{n_points-1} w[k] * (*f)(lambda[k]) \f]
     * For the approximation of \f$ \int_S f\f$ we have to multiply this value 
     * with d!|S| for a simplex S; for a parametric simplex f should be a pointer
     * to a function which calculates 
     * \f$ f(\lambda)|det DF_S(\hat{x}(\lambda))| \f$.
     */
    double integrateStdSimplex(AbstractFunction<double, DimVec<double> > *f);
  
    /** \brief
     * Returns \ref name
     */
117
    inline const std::string& getName() { 
Thomas Witkowski's avatar
Thomas Witkowski committed
118
119
      return name; 
    };
120
121
122
123

    /** \brief
     * Returns \ref n_points
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
124
125
126
    inline int getNumPoints() const {
      return n_points;
    };
127
128
129
130

    /** \brief
     * Returns \ref w[p]
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
131
132
133
    inline double getWeight(int p) const {
      return w[p];
    };
134
135
136
137

    /** \brief
     * Returns \ref w.
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
138
139
140
    inline double* getWeight() const { 
      return w; 
    };
141
142
143
144

    /** \brief
     * Returns \ref dim
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
145
146
147
    inline int getDim() const { 
      return dim; 
    };
148
149
150
151

    /** \brief
     * Returns \ref degree
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
152
153
154
    inline int getDegree() const { 
      return degree; 
    };
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    /** \brief
     * Returns a pointer to a vector storing the values of a doubled valued 
     * function at all quadrature points; f is that AbstractFunction
     * , evaluated in barycentric coordinates; if vec is not NULL, the values are
     * stored in this vector, otherwise the values are stored in some static 
     * local vector, which is overwritten on the next call
     */
    const double *fAtQp(const AbstractFunction<double, DimVec<double> >& f,
			double *vec) const ;

    /** \brief
     * Returns a pointer to a vector storing the gradient (with respect to world
     * coordinates) of a double valued function at all quadrature points;
     * grdF is a pointer to a AbstractFunction, evaluated in barycentric
     * coordinates and returning a pointer to a WorldVector storing the gradient;
     * if vec is not NULL, the values are stored in this vector, otherwise the 
     * values are stored in some local static vector, which is overwritten on the
     * next call
     */
    const WorldVector<double> *grdFAtQp(const AbstractFunction<WorldVector<double>, 
					DimVec<double> >& grdF, 
					WorldVector<double>* vec) const;
  


    /** \brief
     * Returns \ref lambda[a][b] which is the b-th coordinate entry of the a-th
     * quadrature point
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
185
    inline double getLambda(int a, int b) const {
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      return (lambda ? (*lambda)[a][b] : 0.0);
    };

    /** \brief
     * Returns \ref lambda[a] which is a DimVec<double> containing the 
     * coordiantes of the a-th quadrature point
     */
    inline const DimVec<double>& getLambda(int a) const {
      return (*lambda)[a]; 
    };

    /** \brief
     * Returns \ref lambda which is a VectorOfFixvecs<DimVec<double> >.
     */
Thomas Witkowski's avatar
Thomas Witkowski committed
200
201
202
    VectorOfFixVecs<DimVec<double> > *getLambda() const { 
      return lambda; 
    };
203
204
205
206
207
208
209
210
211
212
213
214


  public:
    /** \brief
     * Maximal number of quadrature points for the different dimensions
     */
    static const int maxNQuadPoints[4];

  protected:
    /** \brief
     * Name of this Quadrature
     */
215
    std::string name;
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    /** \brief
     * Quadrature is exact of this degree
     */
    int degree;

    /** \brief
     * Quadrature for dimension dim
     */
    int dim;

    /** \brief
     * Number of quadrature points
     */
    int n_points;

    /** \brief
     * Vector of quadrature points given in barycentric coordinates
     */
    VectorOfFixVecs<DimVec<double> > *lambda; 

    /** \brief
     * Vector of quadrature weights
     */
    double *w;

  protected:
    /** \brief
     * Initialisation of all static Quadrature objects which will be returned
     * by \ref provideQuadrature()
     */
    static void initStaticQuadratures();

    /** \name static quadratures, used weights, and barycentric coords
     * \{
     */
    static Quadrature **quad_nd[4];
    static Quadrature *quad_0d[1];
    static Quadrature *quad_1d[20];
    static Quadrature *quad_2d[18];
    static Quadrature *quad_3d[8];

    static VectorOfFixVecs<DimVec<double> > *x_0d;
    static double *w_0d;

    static VectorOfFixVecs<DimVec<double> > *x0_1d;
    static VectorOfFixVecs<DimVec<double> > *x1_1d;
    static VectorOfFixVecs<DimVec<double> > *x2_1d;
    static VectorOfFixVecs<DimVec<double> > *x3_1d;
    static VectorOfFixVecs<DimVec<double> > *x4_1d;
    static VectorOfFixVecs<DimVec<double> > *x5_1d;
    static VectorOfFixVecs<DimVec<double> > *x6_1d;
    static VectorOfFixVecs<DimVec<double> > *x7_1d;
    static VectorOfFixVecs<DimVec<double> > *x8_1d;
    static VectorOfFixVecs<DimVec<double> > *x9_1d;
    static double *w0_1d;
    static double *w1_1d;
    static double *w2_1d;
    static double *w3_1d;
    static double *w4_1d;
    static double *w5_1d;
    static double *w6_1d;
    static double *w7_1d;
    static double *w8_1d;
    static double *w9_1d;

    static VectorOfFixVecs<DimVec<double> > *x1_2d;
    static VectorOfFixVecs<DimVec<double> > *x2_2d;
    static VectorOfFixVecs<DimVec<double> > *x3_2d;
    static VectorOfFixVecs<DimVec<double> > *x4_2d;
    static VectorOfFixVecs<DimVec<double> > *x5_2d;
    static VectorOfFixVecs<DimVec<double> > *x7_2d;
    static VectorOfFixVecs<DimVec<double> > *x8_2d;
    static VectorOfFixVecs<DimVec<double> > *x9_2d;
    static VectorOfFixVecs<DimVec<double> > *x10_2d;
    static VectorOfFixVecs<DimVec<double> > *x11_2d;
    static VectorOfFixVecs<DimVec<double> > *x12_2d;
    static VectorOfFixVecs<DimVec<double> > *x17_2d;
    static double *w1_2d;
    static double *w2_2d;
    static double *w3_2d;
    static double *w4_2d;
    static double *w5_2d;
    static double *w7_2d;
    static double *w8_2d;
    static double *w9_2d;
    static double *w10_2d;
    static double *w11_2d;
    static double *w12_2d;
    static double *w17_2d;

    static VectorOfFixVecs<DimVec<double> > *x1_3d;
    static VectorOfFixVecs<DimVec<double> > *x2_3d;
    static VectorOfFixVecs<DimVec<double> > *x3_3d;
    static VectorOfFixVecs<DimVec<double> > *x4_3d;
    static VectorOfFixVecs<DimVec<double> > *x5_3d;
    static VectorOfFixVecs<DimVec<double> > *x7_3d;
    static double *w1_3d;
    static double *w2_3d;
    static double *w3_3d;
    static double *w4_3d;
    static double *w5_3d;
    static double *w7_3d;

    /** \} */
  };

  // ============================================================================
  // ===== class FastQuadrature =================================================
  // ============================================================================

  /** \brief
   * Pre-compute the values of all basis functions at all quadrature nodes;  
   */
  const Flag INIT_PHI=1;

  /** \brief
   * Pre-compute the gradients (with respect to the barycentric coordinates) of
   * all basis functions at all quadrature nodes
   */
  const Flag INIT_GRD_PHI=2; 

  /** \brief
   * pre-compute all 2nd derivatives (with respect to the barycentric 
   * coordinates) of all basis functions at all quadrature nodes;
   */
  const Flag INIT_D2_PHI=4;

  // ============================================================================

  /** 
   * \ingroup Integration
   *
   *\brief
   * Often numerical integration involves basis functions, such as the assembling
   * of the system matrix and right hand side, or the integration of finite 
   * element functions. Since numerical quadrature involves only the values at 
   * the quadrature points and the values of basis functions and its derivatives
   * are the same at these points for all elements of the grid, such routines can
   * be much more efficient, if they can use pre-computed values of the basis
   * functions at the quadrature points. In this case the basis functions do not 
   * have to be evaluated for each quadrature point on every element newly.
   * Information that should be pre-computed can be specified by the following 
   * symbolic constants:
   * \ref INIT_PHI, \ref INIT_GRD_PHI, \ref INIT_D2_PHI
   */
  class FastQuadrature
  {
  public:
    MEMORY_MANAGED(FastQuadrature);

  protected:
    /** \brief
     * Constructs a FastQuadrature for the given Quadrature, BasisFunction, and
     * flag.
     */
    FastQuadrature(BasisFunction* basFcts, 
		   Quadrature* quad, 
		   Flag flag)
      : init_flag(flag), 
	phi(NULL), 
	grdPhi(NULL), 
	D2Phi(NULL), 
	quadrature(quad), 
	basisFunctions(basFcts) 
    {};

    /** \brief
     * Copy constructor
     */
    FastQuadrature(const FastQuadrature&);

    /** \brief
     * Extended copy constructor
     */
391
    FastQuadrature(const FastQuadrature&, const Flag);
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    /** \brief
     * Destructor
     */
    ~FastQuadrature();

  public:
    /** \brief
     * Returns a FastQuadrature for the given BasisFunction, Quadrature, and
     * flags
     */
    static FastQuadrature* provideFastQuadrature(const BasisFunction*,
						 const Quadrature&,
						 Flag);

    /** \brief
     * inits FastQuadrature like speciefied in flag
     */
    void init(Flag init_flag);

    inline bool initialized(Flag flag) {
413
      if (flag == INIT_PHI) {
414
415
416
	return (phi != NULL);
      }

417
      if (flag == INIT_GRD_PHI) {
418
419
420
	return (grdPhi != NULL);
      }

421
      if (flag == INIT_D2_PHI) {
422
423
424
425
426
427
428
429
430
431
	return (D2Phi != NULL);
      }

      ERROR_EXIT("invalid flag\n");
      return false;
    };

    /** \brief
     * Returns \ref quadrature
     */
432
433
434
    inline const Quadrature* getQuadrature() const { 
      return quadrature; 
    };
435
436
437
438

    /** \brief
     * Returns \ref max_points
     */
439
440
441
    inline int getMaxQuadPoints() { 
      return max_points; 
    };
442
443
444
445

    /** \brief
     * Returns (*\ref D2Phi)[q][i][j][m]
     */
446
    const double getSecDer(int q, int i, int j, int m) const;
447
448
449
450
451
452
453
454
455

    /** \brief
     * Returns (*\ref D2Phi)[q]
     */
    const VectorOfFixVecs<DimMat<double> > *getSecDer(int q) const;

    /** \brief
     * Returns (*\ref grdPhi)[q][i][j]
     */
456
457
458
    inline const double getGradient(int q, int i ,int j) const {
      return (grdPhi) ? (*grdPhi)[q][i][j] : 0.0;
    };
459
460
461
462

    /** \brief
     * Returns (*\ref grdPhi)[q]
     */
463
464
465
    inline VectorOfFixVecs<DimVec<double> >* getGradient(int q) const {
      return (grdPhi) ? &((*grdPhi)[q]) : NULL;
    };
466
467
468
469

    /** \brief
     * Returns \ref phi[q][i]
     */
470
471
472
    inline const double getPhi(int q, int i) const {
      return (phi) ? phi[q][i] : 0.0;
    };
473
474
475
476

    /** \brief
     * Returns \ref phi[q]
     */
477
478
479
    inline const double *getPhi(int q) const {
      return (phi) ? phi[q] : NULL;
    };
480
481
482
483

    /** \brief
     * Returns \ref quadrature ->integrateStdSimplex(f)
     */
484
    inline double integrateStdSimplex(AbstractFunction<double, DimVec<double> > *f) {
485
486
487
488
489
490
      return quadrature->integrateStdSimplex(f); 
    };
  
    /** \brief
     * Returns \ref quadrature ->getNumPoints()
     */
491
492
493
    inline int getNumPoints() const { 
      return quadrature->getNumPoints();
    };
494
495
496
497

    /** \brief
     * Returns \ref quadrature ->getWeight(p)
     */
498
499
500
    inline double getWeight(int p) const {
      return quadrature->getWeight(p);
    };
501
502
503
504

    /** \brief
     * Returns \ref quadrature ->getDim()
     */
505
506
507
    inline int getDim() const { 
      return quadrature->getDim(); 
    };
508
509
510
511

    /** \brief
     * Returns \ref quadrature ->getDegree()
     */
512
513
514
    inline int getDegree() const { 
      return quadrature->getDegree();
    };
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

    /** \brief
     * Returns \ref quadrature ->grdFAtQp(f, vec)
     */
    inline const WorldVector<double> 
    *grdFAtQp(const AbstractFunction<WorldVector<double>, 
	      DimVec<double> >& f,
	      WorldVector<double>* vec) const 
    { 
      return quadrature->grdFAtQp(f, vec);
    };
  
    /** \brief
     * Returns \ref quadrature ->fAtQp(f, vec)
     */
    inline const double *fAtQp(const AbstractFunction<double, 
531
			       DimVec<double> >& f, double *vec) const 
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    {
      return quadrature->fAtQp(f, vec);    
    };

    /** \brief
     * Returns \ref quadrature ->getLambda(a,b)
     */
    inline double getLambda(int a,int b) const {
      return quadrature->getLambda(a,b);
    };

    /** \brief
     * Returns \ref quadrature ->getLambda(a)
     */
    inline const DimVec<double>& getLambda(int a) const { 
      return quadrature->getLambda(a); 
    };

    /** \brief
     * Returns \ref basisFunctions
     */
553
554
555
    inline BasisFunction* getBasisFunctions() const { 
      return basisFunctions; 
    };
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

  protected:
    /** \brief
     * Specifies which information should be pre-computed. Can be \ref INIT_PHI, 
     * \ref INIT_GRD_PHI, or \ref INIT_D2_PHI
     */
    Flag init_flag;

    /** \brief
     * Matrix storing function values if the flag \ref INIT_PHI is set;
     * phi[i][j] stores the value \ref basisFunctions->phi[j]
     * (quadrature->lambda[i]), 0 <= j < basisFunctions->getNumber()  and 
     * 0 <= i < n_points
     */
    double **phi;

    /** \brief
     * Matrix storing all gradients (with respect to the barycentric coordinates)
     * if the flag \ref INIT_GRD_PHI is set; grdPhi[i][j][k] stores the value 
     * basisFunctions->grdPhi[j](quadrature->lambda[i])[k] 
     * for 0 <= j < basisFunctions->getNumber(),
     * 0 <= i < . . . , n_points, and 0 <= k < DIM
     */
    MatrixOfFixVecs<DimVec<double> > *grdPhi;

    /** \brief
     * Matrix storing all second derivatives (with respect to the barycentric
     * coordinates) if the flag \ref INIT_D2_PHI is set; D2Phi[i][j][k][l] stores
     * the value basisFunctions->D2Phi[j](quadrature->lambda[i])[k][l] 
     * for 0 <= j < basisFunctions->getNumber(), 
     * 0 <= i < n_points, and 0 <= k,l < DIM
     */
    MatrixOfFixVecs<DimMat<double> > *D2Phi;

    /** \brief
     * List of all used FastQuadratures
     */
593
    static std::list<FastQuadrature*> fastQuadList;
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

    /** \brief
     * Maximal number of quadrature points for all yet initialised FastQuadrature
     * objects. This value may change after a new initialisation of a
     * FastQuadrature
     */
    static int max_points;

    /** \brief
     * This FastQuadrature stores values for Quadrature quadrature
     */
    Quadrature* quadrature;

    /** \brief
     * Values stored for basis functions basisFunctions
     */
    BasisFunction* basisFunctions;

  };

}

#endif  // AMDIS_QUADRATURE_H