Liebe Gitlab-Nutzer, lieber Gitlab-Nutzer,
es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Die Konten der externen Nutzer:innen sind über den Reiter "Standard" erreichbar.
Die Administratoren


Dear Gitlab user,
it is now possible to log in to our service using the ZIH login/LDAP. The accounts of external users can be accessed via the "Standard" tab.
The administrators

Mesh.cc 31.7 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1 2 3 4 5 6
#include <algorithm>
#include <set>
#include <map>

#include "time.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#include "AdaptStationary.h"
#include "AdaptInstationary.h"
#include "FiniteElemSpace.h"
#include "ElementData.h"
#include "MacroElement.h"
#include "MacroReader.h"
#include "Mesh.h"
#include "Traverse.h"
#include "Parameters.h"
#include "FixVec.h"
#include "DOFVector.h"
#include "CoarseningManager.h"
#include "DOFIterator.h"
#include "VertexVector.h"
#include "MacroWriter.h"
#include "PeriodicMap.h"
#include "Projection.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
24
#include "ElInfoStack.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace AMDiS {

#define TIME_USED(f,s) ((double)((s)-(f))/(double)CLOCKS_PER_SEC)

  //**************************************************************************
  //  flags, which information should be present in the elInfo structure     
  //**************************************************************************

  const Flag Mesh::FILL_NOTHING    = 0X00L;
  const Flag Mesh::FILL_COORDS     = 0X01L;
  const Flag Mesh::FILL_BOUND      = 0X02L;
  const Flag Mesh::FILL_NEIGH      = 0X04L;
  const Flag Mesh::FILL_OPP_COORDS = 0X08L;
  const Flag Mesh::FILL_ORIENTATION= 0X10L;
  const Flag Mesh::FILL_DET        = 0X20L;
  const Flag Mesh::FILL_GRD_LAMBDA = 0X40L;
  const Flag Mesh::FILL_ADD_ALL    = 0X80L;


45 46 47
  const Flag Mesh::FILL_ANY_1D = (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_2D = (0X01L|0X02L|0X04L|0X08L|0x20L|0X40L|0X80L);
  const Flag Mesh::FILL_ANY_3D = (0X01L|0X02L|0X04L|0X08L|0X10L|0x20L|0X40L|0X80L);
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  //**************************************************************************
  //  flags for Mesh traversal                                                
  //**************************************************************************

  const Flag Mesh::CALL_EVERY_EL_PREORDER  = 0X0100L;
  const Flag Mesh::CALL_EVERY_EL_INORDER   = 0X0200L;
  const Flag Mesh::CALL_EVERY_EL_POSTORDER = 0X0400L;
  const Flag Mesh::CALL_LEAF_EL            = 0X0800L;
  const Flag Mesh::CALL_LEAF_EL_LEVEL      = 0X1000L;
  const Flag Mesh::CALL_EL_LEVEL           = 0X2000L;
  const Flag Mesh::CALL_MG_LEVEL           = 0X4000L ; // used in mg methods 


  // const Flag Mesh::USE_PARAMETRIC          = 0X8000L ; // used in mg methods 

  DOFAdmin* Mesh::compressAdmin = NULL;
  Mesh* Mesh::traversePtr = NULL;
  int Mesh::iadmin = 0;
Thomas Witkowski's avatar
Thomas Witkowski committed
67
  std::vector<DegreeOfFreedom> Mesh::dof_used;
68
  const int Mesh::MAX_DOF = 100;
Thomas Witkowski's avatar
Thomas Witkowski committed
69
  std::map<DegreeOfFreedom, DegreeOfFreedom*> Mesh::serializedDOFs;
70 71 72

  struct delmem { 
    DegreeOfFreedom* ptr;
73
    int len;
74 75 76
  };


Thomas Witkowski's avatar
Thomas Witkowski committed
77
  Mesh::Mesh(const std::string& aName, int dimension) 
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    : name(aName), 
      dim(dimension), 
      nVertices(0),
      nEdges(0),
      nLeaves(0), 
      nElements(0),
      parametric(NULL), 
      preserveCoarseDOFs(false),
      nDOFEl(0),
      nDOF(dimension, DEFAULT_VALUE, 0),
      nNodeEl(0),
      node(dimension, DEFAULT_VALUE, 0),
      elementPrototype(NULL),
      elementDataPrototype(NULL),
      elementIndex(-1),
      initialized(false),
94
      macroFileInfo(NULL),
95 96 97
      final_lambda(dimension, DEFAULT_VALUE, 0.0)
  {

98
    FUNCNAME("Mesh::Mesh()");
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    // set default element prototype
    switch(dim) {
    case 1:
      elementPrototype = NEW Line(this);
      break;
    case 2:
      elementPrototype = NEW Triangle(this);
      break;
    case 3:
      elementPrototype = NEW Tetrahedron(this);
      break;
    default:
      ERROR_EXIT("invalid dimension\n");
    }

    elementPrototype->setIndex(-1);

117 118
    elementIndex = 0;
  }
119 120

  Mesh::~Mesh()
121
  {
122
    Element::deletedDOFs.clear();
123 124 125 126 127 128 129 130

    for (std::deque<MacroElement*>::const_iterator it = macroElements.begin();
	 it != macroElements.end();
	 ++it) {
      (*it)->getElement()->deleteElementDOFs();
      DELETE *it;
    }    

131
    Element::deletedDOFs.clear();
132

133
    if (macroFileInfo != NULL) {
134 135
      DELETE macroFileInfo;
    }
136 137 138 139 140 141 142 143 144 145
    if (elementPrototype) {
      DELETE elementPrototype;
    }
    if (elementDataPrototype) {
      DELETE elementDataPrototype;
    }
    
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      DELETE admin[i];
    }
146
  }
147 148

  Mesh& Mesh::operator=(const Mesh& m)
149
  {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    FUNCNAME("Mesh::operator=()");

    if (this == &m)
      return *this;

    TEST_EXIT(dim == m.dim)("operator= works only on meshes with equal dim!\n");

    name = m.name;
    nVertices = m.nVertices;
    nEdges = m.nEdges;
    nLeaves = m.nLeaves;
    nElements = m.nElements;
    nFaces = m.nFaces;
    maxEdgeNeigh = m.maxEdgeNeigh;
    diam = m.diam;
    parametric = NULL;

    preserveCoarseDOFs = m.preserveCoarseDOFs;
    nDOFEl = m.nDOFEl;
    nDOF = m.nDOF;
    nNodeEl = m.nNodeEl;
    node = m.node;
    newDOF = m.newDOF;
    elementIndex = m.elementIndex;
    initialized = m.initialized;
    final_lambda = m.final_lambda;
    
    /* ====================== Create new DOFAdmins ================== */
    admin.resize(m.admin.size());
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      admin[i] = NEW DOFAdmin(this);
181
      *(admin[i]) = *(m.admin[i]);
182 183
      admin[i]->setMesh(this);
    }
184

185

186
    /* ====================== Copy macro elements =================== */
187
  
188 189 190 191 192 193 194 195 196
    // mapIndex[i] is the index of the MacroElement element in the vector
    // macroElements, for which holds: element->getIndex() = i    
    std::map<int, int> mapIndex;

    // We use this map for coping the DOFs of the Elements within the
    // MacroElements objects.
    Mesh::serializedDOFs.clear();

    int insertCounter = 0;
197

198 199
    macroElements.clear();

200 201 202 203 204
    // Go through all MacroElements of mesh m, and create for every a new
    // MacroElement in this mesh.
    for (std::deque<MacroElement*>::const_iterator it = m.macroElements.begin();
	 it != m.macroElements.end();
	 ++it, insertCounter++) {
205

206 207
      // Create new MacroElement.
      MacroElement *el = NEW MacroElement(dim);
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      // Use copy operator to copy all the data to the new MacroElement.
      *el = **it;

      // Make a copy of the Element data, together with all DOFs
      el->setElement((*it)->getElement()->cloneWithDOFs());

      // Insert the new MacroElement in the vector of all MacroElements.
      macroElements.push_back(el);

      // Update the index map.
      mapIndex.insert(std::pair<int, int>(el->getIndex(), insertCounter));
    }

    // Now we have to go through all the new MacroElements, and update the neighbour
    // connections.
    insertCounter = 0;
    for (std::deque<MacroElement*>::const_iterator it = m.macroElements.begin();
	 it != m.macroElements.end();
	 ++it, insertCounter++) {
      // Go through all neighbours.
      for (int i = 0; i < dim; i++) {
	// 1. Get index of the old MacroElement for its i-th neighbour.
	// 2. Because the index in the new MacroElement is the same, search
	//    for the vector index the corresponding element is stored in.
	// 3. Get this element from macroElements, and set it as the i-th
	//    neighbour for the current element.
	macroElements[insertCounter]->
	  setNeighbour(i, macroElements[mapIndex[(*it)->getNeighbour(i)->getIndex()]]);
      }
    }

    // Cleanup
    Mesh::serializedDOFs.clear();

    /* ================== Things will be done when required ============ */
      
    TEST_EXIT(elementDataPrototype == NULL)("TODO\n");
    TEST_EXIT(m.parametric == NULL)("TODO\n");
    TEST_EXIT(periodicAssociations.size() == 0)("TODO\n");

    return *this;
  }

252 253 254 255 256 257 258 259 260 261 262 263
  void Mesh::updateNumberOfLeaves()
  {
    nLeaves = 0;

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      nLeaves++;
      elInfo = stack.traverseNext(elInfo);
    }
  }

264 265 266 267 268 269
  void Mesh::addMacroElement(MacroElement* me) 
  {
    macroElements.push_back(me); 
    me->setIndex(macroElements.size());
  }

270
  void Mesh::removeMacroElements(std::vector<MacroElement*>& macros) 
271 272 273 274 275
  {
    FUNCNAME("Mesh::removeMacroElement()");

    TEST_EXIT(dim == 2)("Not yet implemented!\n");

276 277 278 279 280 281 282 283 284 285 286
    // Map that stores for each dof pointer (which may have a list of dofs)
    // all macro element indices that own the dof.
    std::map<const DegreeOfFreedom*, std::set<MacroElement*> > dofsOwner;
    
    // Determine all dof owner macro elements.
    for (std::deque<MacroElement*>::iterator macroIt = macroElements.begin();
	 macroIt != macroElements.end();
	 ++macroIt) {
      Element *el = (*macroIt)->getElement();
      for (int i = 0; i < 3; i++)
	dofsOwner[el->getDOF(i)].insert(*macroIt);      
287
    }
288

289
    
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    // Remove all the given macro elements.
    for (std::vector<MacroElement*>::iterator macroIt = macros.begin();
	 macroIt != macros.end();
	 ++macroIt) {
      bool found = false;

      // Remove the macro element from mesh's list of all macro elements.
      for (std::deque<MacroElement*>::iterator it = macroElements.begin();
	   it != macroElements.end();
	   ++it) {
	if (*it == *macroIt) {
	  macroElements.erase(it, it + 1);
	  found = true;
	  break;
	}
      }
      
      TEST_EXIT(found)("Cannot find MacroElement that should be removed!\n");
      
      // Go through all neighbours of the macro element and remove this macro element
      // to be neighbour of some other macro element.
      for (int i = 0; i <= dim; i++) {
	if ((*macroIt)->getNeighbour(i)) {
	  for (int j = 0; j <= dim; j++) {
	    if ((*macroIt)->getNeighbour(i)->getNeighbour(j) == *macroIt) {
	      (*macroIt)->getNeighbour(i)->setNeighbour(j, NULL);
	    }
317
	  }
318 319 320 321
	} else {
	  // There is no neighbour at this edge, so we have to decrease the number
	  // of edges in the mesh.
	  nEdges--;
322
	}
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      }

      nLeaves--;
      nElements--;

      // Remove this macro element from the dof owner list.
      for (std::map<const DegreeOfFreedom*, std::set<MacroElement*> >::iterator dofsIt = dofsOwner.begin();
	   dofsIt != dofsOwner.end();
	   ++dofsIt) {
	std::set<MacroElement*>::iterator mIt = dofsIt->second.find(*macroIt);
	if (mIt != dofsIt->second.end())
	  dofsIt->second.erase(mIt);
      }

      // And remove the macro element from memory
      delete *macroIt;
    }

    int nRemainDofs = 0;
    // Check now all the dofs, that have no owner anymore and therefore have to
    // be removed.
    for (std::map<const DegreeOfFreedom*, std::set<MacroElement*> >::iterator dofsIt = dofsOwner.begin();
	 dofsIt != dofsOwner.end();
	 ++dofsIt) {    
      if (dofsIt->second.size() == 0) {
	dofsOwner.erase(dofsIt++);
349
      } else {
350
	nRemainDofs++;
351 352 353
      }
    }

354
    nVertices = nRemainDofs;
355
  }
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  void Mesh::createContinuousDofOrdering(FiniteElemSpace *feSpace, unsigned int addC) 
  {
    FUNCNAME("Mesh::createContinuousDofOrdering()");

    const BasisFunction* basisFcts = feSpace->getBasisFcts();

    TEST_EXIT(dim == 2)("Not yet implemented!\n");
    TEST_EXIT(basisFcts->getNumber() == 3)("Not yet implemented!\n");

    std::set<DegreeOfFreedom*> dofs;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      for (int i = 0; i < 3; i++) {
	dofs.insert(const_cast<DegreeOfFreedom*>(elInfo->getElement()->getDOF(i)));
      }
      elInfo = stack.traverseNext(elInfo);
    }
  }

378
  int Mesh::traverse(int level, Flag flag, int (*el_fct)(ElInfo*))
379 380
  {
    FUNCNAME("Mesh::traverse()");
Thomas Witkowski's avatar
Thomas Witkowski committed
381

Thomas Witkowski's avatar
Thomas Witkowski committed
382
    std::deque<MacroElement*>::iterator mel;
Thomas Witkowski's avatar
Thomas Witkowski committed
383 384
    ElInfoStack elInfoStack(this);
    ElInfo* elinfo = elInfoStack.getNextElement();
385 386 387 388 389 390 391 392 393 394 395 396 397
    Traverse tinfo(this, flag, level, el_fct);
    int sum = 0;
  
    elinfo->setFillFlag(flag);
  
    if (flag.isSet(Mesh::CALL_LEAF_EL_LEVEL) || 
	flag.isSet(Mesh::CALL_EL_LEVEL)      || 
	flag.isSet(Mesh::CALL_MG_LEVEL)) {
      TEST(level >= 0)("invalid level: %d\n", level);
    }
  
    for (mel = macroElements.begin(); mel != macroElements.end(); mel++) {
      elinfo->fillMacroInfo(*mel);
Thomas Witkowski's avatar
Thomas Witkowski committed
398
      sum += tinfo.recursive(&elInfoStack);
399 400
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
401
    elInfoStack.getBackElement();
402 403 404 405 406 407 408 409 410 411
    
    return (flag.isSet(Mesh::FILL_ADD_ALL)) ? sum : 0;
  }

  void Mesh::addDOFAdmin(DOFAdmin *localAdmin)
  {    
    FUNCNAME("Mesh::addDOFAdmin()");

    localAdmin->setMesh(this);

412 413
    std::vector<DOFAdmin*>::iterator dai = std::find(admin.begin(),admin.end(),localAdmin);

414 415 416 417 418 419 420
    if (dai!= admin.end()) {
      ERROR("admin %s is already associated to mesh %s\n",
	    localAdmin->getName().c_str(), this->getName().c_str());
    }

    // ===== adding dofs to already existing elements ============================ 
    
421 422 423
    // If adding DOFAdmins to already initilized meshes is required, see older
    // AMDiS version (revision < 244) at the same code position.
    TEST_EXIT(!initialized)("Adding DOFAdmins to initilized meshes does not work!\n");
424 425 426 427 428 429 430


    admin.push_back(localAdmin);

    nDOFEl = 0;

    localAdmin->setNumberOfPreDOFs(VERTEX,nDOF[VERTEX]);
431
    nDOF[VERTEX] += localAdmin->getNumberOfDOFs(VERTEX);
432 433
    nDOFEl += getGeo(VERTEX) * nDOF[VERTEX];

434
    if (dim > 1) {
435
      localAdmin->setNumberOfPreDOFs(EDGE,nDOF[EDGE]);
436
      nDOF[EDGE] += localAdmin->getNumberOfDOFs(EDGE);
437 438 439 440 441 442 443
      nDOFEl += getGeo(EDGE) * nDOF[EDGE];
    }

    localAdmin->setNumberOfPreDOFs(CENTER,nDOF[CENTER]);
    nDOF[CENTER]  += localAdmin->getNumberOfDOFs(CENTER);
    nDOFEl += nDOF[CENTER];

444
    TEST_EXIT_DBG(nDOF[VERTEX] > 0)("no vertex dofs\n");
445

446 447
    node[VERTEX] = 0;
    nNodeEl = getGeo(VERTEX);
448

449 450
    if (dim > 1) {
      node[EDGE] = nNodeEl;
451 452
      if (nDOF[EDGE] > 0) 
	nNodeEl += getGeo(EDGE);
453 454
    }

455
    if (dim == 3) {
456
      localAdmin->setNumberOfPreDOFs(FACE,nDOF[FACE]);
457 458 459 460 461
      nDOF[FACE] += localAdmin->getNumberOfDOFs(FACE);
      nDOFEl += getGeo(FACE) * nDOF[FACE];
      node[FACE] = nNodeEl;
      if (nDOF[FACE] > 0) 
	nNodeEl += getGeo(FACE);
462 463
    }

464
    node[CENTER] = nNodeEl;
465
    if (nDOF[CENTER] > 0) {
466
      nNodeEl += 1;
467
    }
468 469 470 471 472 473 474 475 476
  }


  /****************************************************************************/
  /*  dofCompress: remove holes in dof vectors                                */
  /****************************************************************************/

  void Mesh::dofCompress()
  {
477 478 479
    FUNCNAME("Mesh::dofCompress()");
    int size;
    Flag fill_flag;
480

481
    for (iadmin = 0; iadmin < static_cast<int>(admin.size()); iadmin++) {
482 483 484
      compressAdmin = admin[iadmin];

      TEST_EXIT_DBG(compressAdmin)("no admin[%d] in mesh\n", iadmin);
485 486 487
      
      if ((size = compressAdmin->getSize()) < 1) 
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
488

489 490
      if (compressAdmin->getUsedDOFs() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
491

492 493
      if (compressAdmin->getHoleCount() < 1)    
	continue;
Thomas Witkowski's avatar
Thomas Witkowski committed
494
  
495 496 497 498 499 500 501 502
      newDOF.resize(size);
      
      compressAdmin->compress(newDOF);
      
      if (preserveCoarseDOFs) {
	fill_flag = Mesh::CALL_EVERY_EL_PREORDER | Mesh::FILL_NOTHING;
      } else {
	fill_flag = Mesh::CALL_LEAF_EL | Mesh::FILL_NOTHING;
503
      }
504 505 506 507 508 509
      
      traverse( -1, fill_flag, newDOFFct1);
      traverse( -1, fill_flag, newDOFFct2);
      
      newDOF.resize(0);
    }   
510 511 512 513 514
  }


  DegreeOfFreedom *Mesh::getDOF(GeoIndex position)
  {
515
    FUNCNAME("Mesh::getDOF()");
516

517
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
518
      ("unknown position %d\n", position);
519

520 521
    int ndof = getNumberOfDOFs(position);
    if (ndof <= 0) 
522
      return NULL;
523

524
    DegreeOfFreedom *dof = GET_MEMORY(DegreeOfFreedom, ndof);
525

526 527
    for (int i = 0; i < getNumberOfDOFAdmin(); i++) {
      const DOFAdmin *localAdmin = &getDOFAdmin(i);
528
      TEST_EXIT_DBG(localAdmin)("no admin[%d]\n", i);
529 530 531 532
      
      int n  = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
533
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
534 535 536
      
      for (int j = 0; j < n; j++) {
	dof[n0 + j] = const_cast<DOFAdmin*>(localAdmin)->getDOFIndex();
537
      }
538
    }
539
  
540
    return dof;
541 542 543 544 545
  }


  DegreeOfFreedom **Mesh::createDOFPtrs()
  {
546
    FUNCNAME("Mesh::createDOFPtrs()");
547 548

    if (nNodeEl <= 0)
549
      return NULL;
550

551 552
    DegreeOfFreedom **ptrs = GET_MEMORY(DegreeOfFreedom*, nNodeEl);
    for (int i = 0; i < nNodeEl; i++)
553 554
      ptrs[i] = NULL;

555
    return ptrs;
556 557 558 559
  }

  void Mesh::freeDOFPtrs(DegreeOfFreedom **ptrs)
  {
560
    FUNCNAME("Mesh::freeDOFPtrs()");
561

562
    TEST_EXIT_DBG(ptrs)("ptrs=NULL\n");
563 564 565 566 567 568 569 570

    if (nNodeEl <= 0)
      return;
  
    FREE_MEMORY(ptrs, DegreeOfFreedom*, nNodeEl);
  }


Thomas Witkowski's avatar
Thomas Witkowski committed
571
  const DOFAdmin *Mesh::createDOFAdmin(const std::string& lname,DimVec<int> lnDOF)
572
  {
573
    FUNCNAME("Mesh::createDOFAdmin()");
574

575
    DOFAdmin *localAdmin = NEW DOFAdmin(this, lname);
576

577
    for (int i = 0; i < dim+1; i++)
578 579 580 581
      localAdmin->setNumberOfDOFs(i,lnDOF[i]);

    addDOFAdmin(localAdmin);

582
    return localAdmin;
583 584 585 586 587 588 589
  }


  const DOFAdmin* Mesh::getVertexAdmin() const
  {
    const DOFAdmin *localAdmin = NULL;

590 591 592 593 594 595
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      if (admin[i]->getNumberOfDOFs(VERTEX)) {
	if (!localAdmin)  
	  localAdmin = admin[i];
	else if (admin[i]->getSize() < localAdmin->getSize())
	  localAdmin = admin[i];
596
      }
597 598
    }

599
    return localAdmin;
600 601 602 603
  }

  void Mesh::freeDOF(DegreeOfFreedom* dof, GeoIndex position)
  {
604
    FUNCNAME("Mesh::freeDOF()");
605

606
    TEST_EXIT_DBG(position >= CENTER && position <= FACE)
607
      ("unknown position %d\n", position);
608

609 610 611 612
    int ndof = nDOF[position];
    if (ndof) {
      if (!dof) {
	MSG("dof = NULL, but ndof=%d\n", ndof);
613 614
	return;
      }
615 616 617 618 619 620
    } else  {
      if (dof) {
	MSG("dof != NULL, but ndof=0\n");
      }
      return;
    }
621

622
    TEST_EXIT_DBG(ndof <= MAX_DOF)
623
      ("ndof too big: ndof=%d, MAX_DOF=%d\n", ndof, MAX_DOF);
624

625 626 627 628 629 630 631 632 633 634
    for (int i = 0; i < static_cast<int>(admin.size()); i++) {
      DOFAdmin *localAdmin = admin[i];
      int n = localAdmin->getNumberOfDOFs(position);
      int n0 = localAdmin->getNumberOfPreDOFs(position);
      
      TEST_EXIT_DBG(n + n0 <= ndof)("n=%d, n0=%d too large: ndof=%d\n", n, n0, ndof);
      
      for (int j = 0; j < n; j++)
	localAdmin->freeDOFIndex(dof[n0 + j]);
    }
635 636 637 638 639 640 641 642 643 644 645 646 647 648

    FREE_MEMORY(dof, DegreeOfFreedom, ndof);
  }

  void Mesh::freeElement(Element* el)
  {
    freeDOFPtrs(const_cast<DegreeOfFreedom**>(el->getDOF()));
    DELETE el;
  }


  Element* Mesh::createNewElement(Element *parent)
  {
    FUNCNAME("Mesh::createNewElement()");
649 650

    TEST_EXIT_DBG(elementPrototype)("no element prototype\n");
651 652 653

    Element *el = parent ? parent->clone() : elementPrototype->clone();
  
654
    if (!parent && elementDataPrototype) {
655 656 657 658 659 660 661 662
      el->setElementData(elementDataPrototype->clone()); 
    } else {
      el->setElementData(NULL); // must be done in ElementData::refineElementData()
    }

    return el;
  }

663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
  ElInfo* Mesh::createNewElInfo()
  {
    switch(dim) {
    case 1:
      return NEW ElInfo1d(this);
      break;
    case 2:
      return NEW ElInfo2d(this);
      break;
    case 3:
      return NEW ElInfo3d(this);
      break;
    default:
      ERROR_EXIT("invalid dim\n");
      return NULL;
    };
  }

  bool Mesh::findElInfoAtPoint(const WorldVector<double>& xy,
			       ElInfo *el_info,
684 685
			       DimVec<double>& bary,
			       const MacroElement *start_mel,
686
			       const WorldVector<double> *xy0,
687
			       double *sp)
688 689 690 691 692 693 694 695 696 697
  {
    static const MacroElement *mel = NULL;
    DimVec<double> lambda(dim, NO_INIT);
    ElInfo *mel_info = NULL;

    mel_info = createNewElInfo();

    if (start_mel != NULL)
      mel = start_mel;
    else
698
      if ((mel == NULL) || (mel->getElement()->getMesh() != this))
699 700 701
	mel = *(macroElements.begin());

    mel_info->setFillFlag(Mesh::FILL_COORDS);
702
    g_xy = &xy;
703
    g_xy0 = xy0;
704
    g_sp = sp;
705 706 707

    mel_info->fillMacroInfo(mel);

708
    int k;
709 710 711 712 713 714 715 716 717 718
    while ((k = mel_info->worldToCoord(xy, &lambda)) >= 0) {
      if (mel->getNeighbour(k)) {
	mel = mel->getNeighbour(k);
	mel_info->fillMacroInfo(mel);
	continue;
      }
      break;
    }

    /* now, descend in tree to find leaf element at point */
719 720 721 722
    bool inside = findElementAtPointRecursive(mel_info, lambda, k, el_info);
    for (int i = 0; i <= dim; i++) {
      bary[i] = final_lambda[i];
    }
723 724 725
  
    DELETE mel_info;

726
    return inside;
727 728 729
  }

  bool Mesh::findElementAtPoint(const WorldVector<double>&  xy,
730 731
				Element **elp, 
				DimVec<double>& bary,
732
				const MacroElement *start_mel,
733 734
				const WorldVector<double> *xy0,
				double *sp)
735
  {
736 737
    ElInfo *el_info = createNewElInfo();
    int val = findElInfoAtPoint(xy, el_info, bary, start_mel, xy0, sp);
738 739 740 741 742

    *elp = el_info->getElement();

    DELETE el_info;

743
    return val;
744 745 746 747
  }



748
  bool Mesh::findElementAtPointRecursive(ElInfo *el_info,
749
					 const DimVec<double>& lambda,
750
					 int outside,
751 752
					 ElInfo* final_el_info)
  {
753
    FUNCNAME("Mesh::findElementAtPointRecursive()");
754 755
    Element *el = el_info->getElement();
    DimVec<double> c_lambda(dim, NO_INIT);
756 757
    int inside;
    int ichild, c_outside;
758 759 760 761

    if (el->isLeaf()) {
      *final_el_info = *el_info;
      if (outside < 0) {
762 763 764 765
	for (int i = 0; i <= dim; i++) {
	  final_lambda[i] = lambda[i];
	}

766
	return true;
767 768 769 770 771 772 773 774 775 776 777 778
      }  else {  /* outside */
	if (g_xy0) { /* find boundary point of [xy0, xy] */
	  el_info->worldToCoord(*(g_xy0), &c_lambda);
	  double s = lambda[outside] / (lambda[outside] - c_lambda[outside]);
	  for (int i = 0; i <= dim; i++) {
	    final_lambda[i] = s * c_lambda[i] + (1.0-s) * lambda[i];
	  }
	  if (g_sp) {
	    *(g_sp) = s;
	  }
	  if (dim == 3) 
	    MSG("outside finest level on el %d: s=%.3e\n", el->getIndex(), s);
779

780
	  return false;  /* ??? */
781
	} else {
782
	  return false;
783
	}
784
      }
785 786
    }

787
    ElInfo *c_el_info = createNewElInfo();
788

789
    if (dim == 1) {
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (outside >= 0) {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (outside >= 0)  {
	  outside = el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) ERROR("point outside domain\n");
	} else {
	  c_lambda[1] = lambda[1] - lambda[0];
	  c_lambda[0] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 1 */

811
    if (dim == 2) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
      if (lambda[0] >= lambda[1]) {
	c_el_info->fillElInfo(0, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 0\n");
	  }
	} else {
	  c_lambda[0] = lambda[2];
	  c_lambda[1] = lambda[0] - lambda[1];
	  c_lambda[2] = 2.0 * lambda[1];
	}
      } else {
	c_el_info->fillElInfo(1, el_info);
	if (el->isNewCoordSet()) {
	  outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);
	  if (outside >= 0) {
	    ERROR("outside curved boundary child 1\n");
	  }
	} else {
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[2];
	  c_lambda[2] = 2.0 * lambda[0];
	}
      }
    } /* DIM == 2 */

839
    if (dim == 3) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
      if (el->isNewCoordSet()) {
	if (lambda[0] >= lambda[1])
	  ichild = 0;
	else
	  ichild = 1;
	c_el_info->fillElInfo(ichild, el_info);
	c_outside = c_el_info->worldToCoord(*(g_xy), &c_lambda);

	if (c_outside>=0) {  /* test is other child is better... */
	  DimVec<double> c_lambda2(dim, NO_INIT);
	  int c_outside2;
	  ElInfo *c_el_info2 = createNewElInfo();

	  c_el_info2->fillElInfo(1-ichild, el_info);
	  c_outside2 = c_el_info2->worldToCoord(*(g_xy), &c_lambda2);

	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      ichild, c_outside, c_lambda[0],c_lambda[1],c_lambda[2],c_lambda[3]);
	  MSG("new_coord CHILD %d: outside=%d, lambda=(%.2f %.2f %.2f %.2f)\n",
	      1-ichild, c_outside2, c_lambda2[0],c_lambda2[1],c_lambda2[2],
	      c_lambda2[3]);

	  if ((c_outside2 < 0) || (c_lambda2[c_outside2] > c_lambda[c_outside])) {
863 864 865
	    for (int i = 0; i <= dim; i++) {
	      c_lambda[i] = c_lambda2[i];
	    }
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	    c_outside = c_outside2;
	    *c_el_info = *c_el_info2;
	    ichild = 1 - ichild;
	  }
	  DELETE c_el_info2;
	}
	outside = c_outside;
      } else {  /* no new_coord */
	if (lambda[0] >= lambda[1]) {
	  c_el_info->fillElInfo(0, el_info);
	  c_lambda[0] = lambda[0] - lambda[1];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][0][2]];
	  c_lambda[3] = 2.0 * lambda[1];
	} else {
	  c_el_info->fillElInfo(1, el_info);
	  c_lambda[0] = lambda[1] - lambda[0];
	  c_lambda[1] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][1]];
	  c_lambda[2] = lambda[Tetrahedron::childVertex[(dynamic_cast<ElInfo3d*>(el_info))->
							getType()][1][2]];
	  c_lambda[3] = 2.0 * lambda[0];
	}
      }
    }  /* DIM == 3 */

    inside = findElementAtPointRecursive(c_el_info, c_lambda, outside, 
					 final_el_info);
    DELETE c_el_info;

898
    return inside; 
899 900 901
  }


Thomas Witkowski's avatar
Thomas Witkowski committed
902 903 904 905
  void Mesh::setDiameter(const WorldVector<double>& w) 
  { 
    diam = w; 
  }
906

Thomas Witkowski's avatar
Thomas Witkowski committed
907 908 909 910
  void Mesh::setDiameter(int i, double w) 
  { 
    diam[i] = w; 
  }
911 912 913 914 915 916 917 918 919 920 921 922


  int Mesh::newDOFFct1(ElInfo* ei) {
    ei->getElement()->newDOFFct1(compressAdmin);
    return 0;
  }

  int Mesh::newDOFFct2(ElInfo* ei) {
    ei->getElement()->newDOFFct2(compressAdmin);
    return 0;
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
923
  void Mesh::serialize(std::ostream &out)
924 925 926 927
  {
    serializedDOFs.clear();

    // write name
Thomas Witkowski's avatar
Thomas Witkowski committed
928
    out << name << "\n";
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

    // write dim
    out.write(reinterpret_cast<const char*>(&dim), sizeof(int));

    // write nVertices
    out.write(reinterpret_cast<const char*>(&nVertices), sizeof(int));

    // write nEdges
    out.write(reinterpret_cast<const char*>(&nEdges), sizeof(int));

    // write nLeaves
    out.write(reinterpret_cast<const char*>(&nLeaves), sizeof(int));

    // write nElements
    out.write(reinterpret_cast<const char*>(&nElements), sizeof(int));

    // write nFaces
    out.write(reinterpret_cast<const char*>(&nFaces), sizeof(int));

    // write maxEdgeNeigh
    out.write(reinterpret_cast<const char*>(&maxEdgeNeigh), sizeof(int));

    // write diam
    diam.serialize(out);

    // write preserveCoarseDOFs
    out.write(reinterpret_cast<const char*>(&preserveCoarseDOFs), sizeof(bool));

    // write nDOFEl
    out.write(reinterpret_cast<const char*>(&nDOFEl), sizeof(int));

    // write nDOF
    nDOF.serialize(out);

    // write nNodeEl
    out.write(reinterpret_cast<const char*>(&nNodeEl), sizeof(int));

    // write node
    node.serialize(out);

    // write admins
    int i, size = static_cast<int>(admin.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      admin[i]->serialize(out);
    }

    // write macroElements
    size = static_cast<int>(macroElements.size());
    out.write(reinterpret_cast<const char*>(&size), sizeof(int));
    for (i = 0; i < size; i++) {
      macroElements[i]->serialize(out);
    }

    // write elementIndex
    out.write(reinterpret_cast<const char*>(&elementIndex), sizeof(int));

    // write initialized
    out.write(reinterpret_cast<const char*>(&initialized), sizeof(bool));

    serializedDOFs.clear();
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
992
  void Mesh::deserialize(std::istream &in)
993 994 995 996 997 998 999 1000 1001 1002
  {
    serializedDOFs.clear();

    // read name
    in >> name;
    in.get();

    // read dim
    int oldVal = dim;
    in.read(reinterpret_cast<char*>(&dim), sizeof(int));
1003
    TEST_EXIT_DBG((oldVal == 0) || (dim == oldVal))("invalid dimension\n");
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

    // read nVertices
    in.read(reinterpret_cast<char*>(&nVertices), sizeof(int));

    // read nEdges
    in.read(reinterpret_cast<char*>(&nEdges), sizeof(int));

    // read nLeaves
    in.read(reinterpret_cast<char*>(&nLeaves), sizeof(int));

    // read nElements
    in.read(reinterpret_cast<char*>(&nElements), sizeof(int));

    // read nFaces
    in.read(reinterpret_cast<char*>(&nFaces), sizeof(int));

    // read maxEdgeNeigh
    in.read(reinterpret_cast<char*>(&maxEdgeNeigh), sizeof(int));

    // diam
    diam.deserialize(in);

    // read preserveCoarseDOFs
    in.read(reinterpret_cast<char*>(&preserveCoarseDOFs), sizeof(bool));

    // read nDOFEl
    oldVal = nDOFEl;
    in.read(reinterpret_cast<char*>(&nDOFEl), sizeof(int));
1032
    TEST_EXIT_DBG((oldVal == 0) || (nDOFEl == oldVal))("invalid nDOFEl\n");
1033 1034 1035 1036 1037 1038 1039

    // read nDOF
    nDOF.deserialize(in);

    // read nNodeEl
    oldVal = nNodeEl;
    in.read(reinterpret_cast<char*>(&nNodeEl), sizeof(int));
1040
    TEST_EXIT_DBG((oldVal == 0) || (nNodeEl == oldVal))("invalid nNodeEl\n");
1041 1042 1043 1044 1045

    // read node
    node.deserialize(in);

    // read admins
1046
    int size;
1047 1048
    in.read(reinterpret_cast<char*>(&size), sizeof(int));
    admin.resize(size, NULL);
1049
    for (int i = 0; i < size; i++) {
1050 1051 1052 1053 1054 1055 1056 1057 1058
      if (!admin[i]) {
	admin[i] = NEW DOFAdmin(this);
      }
      admin[i]->deserialize(in);
    }

    // read macroElements
    in.read(reinterpret_cast<char*>(&size), sizeof(int));

Thomas Witkowski's avatar
Thomas Witkowski committed
1059
    std::vector< std::vector<int> > neighbourIndices(size);
1060

1061
    for (int i = 0; i < static_cast<int>(macroElements.size()); i++) {
1062 1063 1064 1065 1066
      if (macroElements[i]) {
	DELETE macroElements[i];
      }
    }
    macroElements.resize(size);
1067
    for (int i = 0; i < size; i++) {
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
      macroElements[i] = NEW MacroElement(dim);
      macroElements[i]->writeNeighboursTo(&(neighbourIndices[i]));
      macroElements[i]->deserialize(in);
    }

    // read elementIndex
    in.read(reinterpret_cast<char*>(&elementIndex), sizeof(int));

    // read initialized
    in.read(reinterpret_cast<char*>(&initialized), sizeof(bool));

    // set neighbour pointer in macro elements
1080 1081 1082
    int neighs = getGeo(NEIGH);
    for (int i = 0; i < static_cast<int>(macroElements.size()); i++) {
      for (int j = 0; j < neighs; j++) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	int index = neighbourIndices[i][j];
	if(index != -1) {
	  macroElements[i]->setNeighbour(j, macroElements[index]);
	} else {
	  macroElements[i]->setNeighbour(j, NULL);
	}
      }
    }

    // set mesh pointer in elements
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(this, -1, CALL_EVERY_EL_PREORDER);
1095
    while (elInfo) {
1096 1097 1098 1099 1100 1101 1102 1103 1104
      elInfo->getElement()->setMesh(this);
      elInfo = stack.traverseNext(elInfo);
    }

    serializedDOFs.clear();
  }

  void Mesh::initialize() 
  {
Thomas Witkowski's avatar
Thomas Witkowski committed
1105 1106 1107
    std::string macroFilename("");
    std::string valueFilename("");
    std::string periodicFile("");
1108 1109 1110 1111 1112 1113 1114 1115 1116
    int check = 1;

    GET_PARAMETER(0, name + "->macro file name",  &macroFilename);
    GET_PARAMETER(0, name + "->value file name",  &valueFilename);
    GET_PARAMETER(0, name + "->periodic file", &periodicFile);
    GET_PARAMETER(0, name + "->check", "%d", &check);
    GET_PARAMETER(0, name + "->preserve coarse dofs", "%d", &preserveCoarseDOFs);

    if (macroFilename.length()) {
1117 1118 1119
      macroFileInfo = MacroReader::readMacro(macroFilename.c_str(), this,
					     periodicFile == "" ? NULL : periodicFile.c_str(),
					     check);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

      // If there is no value file which should be written, we can delete
      // the information of the macro file.
      if (!valueFilename.length()) {
	clearMacroFileInfo();
      }
    }

    initialized = true;
  }

  bool Mesh::associated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1132 1133
    std::map<BoundaryType, VertexVector*>::iterator it;
    std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
1134 1135 1136 1137 1138 1139 1140 1141
    for (it = periodicAssociations.begin(); it != end; ++it) {
      if ((*(it->second))[dof1] == dof2)
	return true;
    }
    return false;
  }

  bool Mesh::indirectlyAssociated(DegreeOfFreedom dof1, DegreeOfFreedom dof2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1142 1143 1144
    std::vector<DegreeOfFreedom> associatedToDOF1;
    std::map<BoundaryType, VertexVector*>::iterator it;
    std::map<BoundaryType, VertexVector*>::iterator end = periodicAssociations.end();
1145 1146 1147
    DegreeOfFreedom dof, assDOF;

    associatedToDOF1.push_back(dof1);
Thomas Witkowski's avatar
Thomas Witkowski committed
1148 1149 1150
    for (it = periodicAssociations.begin(); it != end; ++it) {
      int size = static_cast<int>(associatedToDOF1.size());
      for (int i = 0; i < size; i++) {
1151 1152
	dof = associatedToDOF1[i];
	assDOF = (*(it->second))[dof];
Thomas Witkowski's avatar
Thomas Witkowski committed
1153
	if (assDOF == dof2) {
1154 1155
	  return true;
	} else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1156 1157
	  if (assDOF != dof) 
	    associatedToDOF1.push_back(assDOF);
1158 1159 1160 1161 1162 1163 1164 1165
	}
      }
    }
    return false;
  }

  void Mesh::clearMacroFileInfo()
  {