/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ /** \file kdtree_nanoflann_dof.h */ #ifndef KDTREE_NANOFLANN_DOF_H #define KDTREE_NANOFLANN_DOF_H #include #include #include #include "AMDiS.h" using namespace nanoflann; using namespace AMDiS; namespace experimental { // ===================================================================================== typedef WorldVector PointType; typedef DOFVector VectorOfVectors_Dof; // ===================================================================================== /** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage. * The i'th vector represents a point in the state space. * * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. * \tparam value_type The type of the point coordinates (typically, double or float). * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. * \tparam index_type The type for indices in the KD-tree index (typically, size_t of int) */ template < class VectorOfVectorsType, typename value_type = double, int DIM = -1, class Distance = nanoflann::metric_L2_Simple, typename index_type = DegreeOfFreedom > struct KDTreeDOFVectorOfWorldVectorsAdaptor { typedef KDTreeDOFVectorOfWorldVectorsAdaptor< VectorOfVectorsType, value_type, DIM, Distance, index_type > self_t; typedef typename Distance::template traits::distance_t metric_t; typedef KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, index_type > index_t; index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. /// Constructor: takes a const ref to the vector of vectors object with the data points KDTreeDOFVectorOfWorldVectorsAdaptor(const int dimensionality, VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat) { const size_t dims = (*mat.begin()).getSize(); assert(mat.getUsedSize() != 0 && dims != 0); if (DIM > 0 && static_cast(dims) != DIM) throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument"); index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims ) ); index->buildIndex(); } ~KDTreeDOFVectorOfWorldVectorsAdaptor() { delete index; } void reinit(const int leaf_max_size = 10) { delete index; const size_t dims = (*m_data.begin()).getSize(); index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims ) ); index->buildIndex(); } VectorOfVectorsType &m_data; /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). * Note that this is a short-cut method for index->findNeighbors(). * The user can also call index->... methods as desired. * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. */ inline void query(const value_type *query_point, const size_t num_closest, index_type *out_indices, value_type *out_distances_sq, const int nChecks_IGNORED = 10) const { nanoflann::KNNResultSet resultSet(num_closest); resultSet.init(out_indices, out_distances_sq); index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); } /** @name Interface expected by KDTreeSingleIndexAdaptor * @{ */ const self_t & derived() const { return *this; } self_t & derived() { return *this; } // Must return the number of data points inline size_t kdtree_get_point_count() const { return m_data.getUsedSize(); } // Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: inline value_type kdtree_distance(const value_type *p1, const index_type idx_p2, size_t size) const { value_type s = 0.0; for (size_t i = 0; i < size; i++) { const value_type d = p1[i] - m_data[idx_p2][i]; s += d*d; } return s; } // Returns the dim'th component of the idx'th point in the class: inline value_type kdtree_get_pt(const index_type idx, size_t dim) const { return m_data[idx][dim]; } // Optional bounding-box computation: return false to default to a standard bbox computation loop. // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX &bb) const { return false; } /** @} */ /** * strategy and nrOfPoints are ignored * == evalAtPoint_simple **/ template T evalAtPoint(const DOFVector& vec, const PointType& x, int strategy = 0, int nrOfPoints = -1) { const size_t nnp = 1; std::vector ret_indexes(nnp); std::vector out_dists_sqr(nnp); nanoflann::KNNResultSet resultSet(nnp); double eps = 0.0; Parameters::get("KD-Tree->eps",eps); resultSet.init(&ret_indexes[0], &out_dists_sqr[0]); index->findNeighbors(resultSet, x.begin(), nanoflann::SearchParams(10, eps)); T value; nullify(value); value = vec[ret_indexes[0]]; return value; } }; // end of KDTreeDOFVectorOfWorldVectorsAdaptor typedef KDTreeDOFVectorOfWorldVectorsAdaptor< VectorOfVectors_Dof, double > KD_Tree_Dof; static std::map > kdtreeMap_Dof; inline KD_Tree_Dof* provideKDTree(const FiniteElemSpace* feSpace) { if (kdtreeMap_Dof.find(feSpace) != kdtreeMap_Dof.end()) { if (kdtreeMap_Dof[feSpace].first != feSpace->getMesh()->getChangeIndex()) { feSpace->getMesh()->getDofIndexCoords(feSpace, kdtreeMap_Dof[feSpace].second->m_data); kdtreeMap_Dof[feSpace].second->reinit(); kdtreeMap_Dof[feSpace].first = feSpace->getMesh()->getChangeIndex(); } } else { DOFVector >* coords = new DOFVector >(feSpace, "coords"); feSpace->getMesh()->getDofIndexCoords(feSpace, *coords); KD_Tree_Dof* kdtree = new KD_Tree_Dof(Global::getGeo(WORLD), *coords); kdtreeMap_Dof[feSpace] = std::make_pair(feSpace->getMesh()->getChangeIndex(), kdtree); } return kdtreeMap_Dof[feSpace].second; } } // end namespace #endif