edit-this-file.tex 24.3 KB
Newer Older
Harry Fuchs's avatar
Harry Fuchs committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
% \square?

%%%%%%%%%%%

* Meta-Infos

Übungen flexibel

** Skript

myfsr.de

- Skripte

- ganz unten

- Typos und Fehler gerne und bitte an Benedikt Bartsch. E-Mail-Adresse siehe:

 - https://myfsr.de/dokuwiki/doku.php?id=fsr:mitglieder

** Forum

physik.protagon.space

** Literatur

Walschap: Metric Structures in Differential Geometry

Spivac: Comprehensive Introduction to Differential Geometry, vol. I

Ben Andrews: Lectures on Differential Geometry

math-people.anu.edu.au/~andrews/DG

* Begriff Differentialgeometrie

Sie studiert Mannigfaltigkeiten. Mannigfaltigkeiten ist die Abstraktion einer (Hyper-)Fläche in $\mathbb R^n$, $n\in \mathbb N$.

TODO Bildchen 1

TODO Bildchen 2

Auf $U\cap V$ haben wir zwei Abbildungen:

\begin{center}
\begin{tikzcd}
                                                                            & U\cap V \arrow[ld, "X"'] \arrow[rd, "Y"] &                                                 \\
\underbrace{X(U\cap V)}_{\subseteq \mathbb R^2} \arrow[rr, "Y\circ X^{-1}"] &                                          & \underbrace{Y(U\cap V)}_{\subseteq \mathbb R^2}
\end{tikzcd}
\end{center}

Problem: bekannte Dinge aus der Analysis hängen meist von Koordinatensystemen ab.

Frage: Welche Größen sind koordinatenunabhängig?

* Tangentialvektoren in $\mathbb R^n$

** Notation

- $n$, $m \in \mathbb N$ seien ab jetzt natürliche Zahlen
Harry Fuchs's avatar
Harry Fuchs committed
61
- Alle Abbildungen $\mathbb R^n \to \mathbb R^m$ -- auch mit Einschränkungen der Bilder und Urbiler dieser -- werden ab jetzt glatt vorrausgesetzt
Harry Fuchs's avatar
Harry Fuchs committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
- $f\colon U\to V$
 - $$
     D_xf = \left[ \frac{\partial f_i}{\partial x_j} (x) \right] \leftarrow \text{Matrix}
   $$
 - $$
     Df = \left[ \frac{\partial f_i}{\partial x_j} \right]\in M_{m\times n}(C^\infty(U))
   $$

TODO Bildchen 3

naive Vorstellung: ein Tangentialvektor an $p\in \mathbb R^n$ ist ein (gewähltes) Element $\xi \in\mathbb R^n$

Alle möglichen Tangentialvektoren an allen Punkten sind dann identifiziert mit

$$
  T\mathbb R^n := \mathbb R^n \times \mathbb R^n \ni (p, \xi)
$$

$\leftarrow$ Koordinatentransformation ändert Einträge

Basiswechselmatrix:

$$
\begin{blockarray}{ccc}
\begin{block}{[ccc]}
  \frac{\sqrt 3}{2} & \frac{1}{2} \\
  -\frac12 & \frac{\sqrt 3}{2} \\
\end{block}
\uparrow & \uparrow  \\
f_1 & f_2  \\
\end{blockarray}
$$

(in $E$-Koordinatensystem)

$\Rightarrow$

$$
  (B^{-1} \cdot p, B^{-1}\cdot \xi) = (p', \xi')
$$

$\leftarrow$ Koordinaten von $(p, \xi)$ in $\mathcal F$-Koordinatensystem.

TODO Bildchen 4

$$
  (p, \xi) \in T\mathbb R^n, \quad \varphi \colon \mathbb R^n \to \mathbb R
$$

Richtungsableitung

$$
  \underbrace{\partial_{\xi}\varphi}_{\text{Richtungsableitung}} := \underbrace{D_p \varphi}_{\text{Zeile}} \cdot \underbrace{\xi}_{\text{Spalte}} = D_p\varphi(\xi)\in \mathbb R
$$

Idee: benutze das als Definition
 - „ein Tangentialvektor ist das, was Funktionen ableitet“
 - „Tangentialvektor = Richtungsableitung“

Harry Fuchs's avatar
Harry Fuchs committed
121
122
%2019-10-18

Harry Fuchs's avatar
Harry Fuchs committed
123
124
125
126
127
128
129
130
131
132
Sei $(p, \xi) \in \mathbb R^n \times \mathbb R^n$ ein (in Koordinaten darstellbarer) Tangentialvektor

TODO Bildchen 5

$$
  \partial_{(\varphi, \xi)} \varphi &:=& D_p\varphi(\xi)
  \\&=& \sum_{i=1}^n \xi^i \frac{\partial \varphi}{\partial x^i}(p)
  \\&=&\left( \sum_{i=1}^n \xi^i \left.\frac{\partial}{\partial x^i}\right|_p \right)(\varphi)
$$

Harry Fuchs's avatar
Harry Fuchs committed
133
* Definition: Derivation
Harry Fuchs's avatar
Harry Fuchs committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

Sei $p\in \mathbb R^n$. Eine Derivation an $p$ ist $\partial \colon C^\infty(\mathbb R^n)\xrightarrow{\text{linear}} \mathbb R$ mit

$$
  \partial (\varphi\cdot\psi) = \partial \varphi \cdot \psi(p) + \partial \psi \cdot \varphi(p)
$$

* Beispiel

$\forall (p, \xi)\in \mathbb R^n \times \mathbb R^n$, $\partial_{(p, \xi)} = \partial_{(p, \xi)}(\cdot)$ ist Derivation an $p$.

* Proposition

$\forall \partial \colon C^\infty(\mathbb R^n) \to \mathbb R$ Derivation in $p$: $\exists! \xi\in \mathbb R^n : \partial = \partial_{(p, \xi)}$

Beweis:

Seien $x^i \colon \R^n \to \R : (x^1, \ldots, x^n) \mapsto x^i$ Koordinatenabbildungen / Projektionen. Setze:

$$
  \xi_i := \partial (x^i)\in \R
$$

Zu zeigen:

$$
  \partial = \partial_{\left(p, \left( \begin{matrix} \xi_1 \\ \vdots \\ \xi_n \end{matrix} \right) \right)}
$$

Trick:

ein $\varphi \in C^\infty (\mathbb R^n)$ kann mit $\varphi_i(x)\in C^\infty(\R^n)$ sowie:

$$
  \varphi(x) = \varphi(p) + \sum_{i=1}^n \varphi_i(x) (x^i - p^i) \quad \text{fast Taylor}
$$

Beweis des Tricks:

$$
  \varphi (x) - \varphi(p) &=& \int_0^1 \frac{\partial \varphi(p+t(x-p))}{\partial t} \diffd t
  \\ &\overset{\text{Kettenregel + Skalarprodukt ausmultiplizieren }}=&
    \sum_{i=1}^n \int_0^1 \frac{\partial \varphi}{\partial x^i} (p+t(x-p))\cdot (x^i - p^i)\intd t
  \\&=&\sum_{i=1}^n (x^i-p^i) \underbrace{\int_0^1 \frac{\partial\varphi}{\partial x^i}(p+t(x-p))\intd t}_{=: \varphi_i(x)}
$$

$$
  \partial (1) = \partial (1\cdot 1) \overset{\text{Leibnitz}}= \partial (1) + \partial (1) \Rightarrow \partial (1) = 0
$$

$$
  \partial (\varphi) &=& \partial \left(\varphi(p) + \sum_{i=1}^n \varphi_i(x)\cdot(x^i - p^i)\right)
  \\&\overset{\text{Leibnitz, Linearität}}=& \sum_{i=1}^n \left( \partial (\varphi_i)(\underbrace{p^i -p^i}_{=0}) + \underbrace{\varphi_i(p) \partial (x^i}_{\xi_i} \underbrace{- p^i)}_{\text{konstant}} \right)
  \\&=&\sum_{i=1}^n \varphi_i(p) \xi_i
  \\&=& \sum_{i=1}^n \xi_i \frac{\partial \varphi}{\partial x^i}(p)
$$


Eindeutigkeit folgt aus der Linearität der Derivation:

$$
  &&\partial_{(p, \xi)} = \partial_{(p, \xi')}
  \\&\Rightarrow& \partial_{(p, \xi -\xi')} = 0
  \\&\Rightarrow&\forall i\in \mathbb N_{\leqslant n} : \xi^i - \xi^i = 0 (= \partial_{(p, \xi-\xi')}(x^i))
$$

$\square$

Fazit: Tangentialvektoren an $p\in \R^n\mathrel{\hat=}$ Derivation an $p$

* Definition: Tangentialraum

$$
  T_p\mathbb R^n := \{ \partial \colon C^\infty (\R^n) \to \R\ |\ \partial \text{ Derivation} \}
$$

** Bemerkung

 - Vektorraum, da Derivationen VR bilden
 - Beweis der Proposition liefert:
 $$
   T_p\R^n \cong \R^n, \quad \partial_{(p, \xi)} \mapsfrom\xi
 $$
 - $\dim (T_p\R^n)=n$

* Frage

Sei $p\in U\in \mathcal O(\R^n) \leftarrow \text{offenen Mengen}$. Was ist folgende Menge?
$$
  T_p U := \{ \partial \colon C^\infty (U) \to \R \ |\ \partial \text{ Derivation} \}
$$

* Behauptung/Intuition

Es gilt:

$$
  T_p U \cong T_p\mathbb R^n
$$

Beweis:

Definiere die duale Abbildung:

$$
  \varepsilon^* \colon
  \begin{cases}
    T_pU &\to T_p\R^n
    \\ \partial &\mapsto
      \begin{cases}
        C^\infty (\R^n) &\to C^\infty(U)
        \\ \varphi &\mapsto \partial (\varphi|_U)
      \end{cases}
  \end{cases}
$$

Zeige, dass $\varepsilon^*$ ein Isomophismus ist.

Sei

$$
  \varepsilon \colon
  \begin{cases}
    C^\infty (\R^n) &\to C^\infty(U)
    \\ \varphi &\mapsto \varphi|_U
  \end{cases}
$$

$\varepsilon^*$ ist surjektiv:

Sei $\xi\in \R^n$, $\partial_{(p,\xi)}\in T_p\R^n$. $\varepsilon^* (\underbrace{\partial_{(p, \xi)} }_{\in T_pU}) = \partial_{(p,\xi)}\in T_p\R^n$. Surjektivität ist relativ klar. Gibt es einen Unterschied zwischen $\partial_{(p, \xi)} \in T_pU$ und $\partial_{(p, \xi)} \in T_p\R^n$?

$\varepsilon^*$ ist injektiv:

$$
  &\Leftrightarrow& \ker(\varepsilon^*) = \{0\}
  \\ &\Leftrightarrow& \forall \partial \in \ker(\varepsilon^*) : \partial = 0
$$

Sei $\partial \in \ker(\varepsilon^*)$. Dann gilt für $\partial$:

$$
  &&\partial \in \ker(\varepsilon^*)
  \\&\Leftrightarrow& \varepsilon^*(\partial) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varphi|_U)) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varepsilon (\varphi))) = 0
  \\&\Leftrightarrow& \partial \circ \varepsilon = 0
  \\&\Leftrightarrow& \forall \varphi \in C^\infty (\R^n): \partial (\varphi|_U) = 0
$$

Es bleibt noch zu zeigen, dass:

$$
  \forall \psi\in C^\infty(U) \exists \varphi\in C^\infty(\mathbb R^n) : \partial (\psi) = \partial (\varphi|_U)
$$

denn dann:

$$
  \partial (\psi) = \partial (\varphi|_U) = 0
$$

Sei $\psi\in C^\infty(U)$. Sei

$$
  \chi(x) :=
  \begin{cases}
    0, & |x| \geqslant 1
    \\ \exp \left(\frac{1}{x^2-1}\right), & |x| < 1
  \end{cases}
  \quad \in C^\infty(\R^n)
$$

TODO Bildchen 6

die Hügelfunktion und

$$
  \varrho (x) :=\frac{\int_{-\infty}^x \chi(t) \intd t}{\int_{-\infty}^\infty \chi(t) \intd t}
$$

die Hangfunktion

TODO Bildchen 7

$U$ offen $\Rightarrow \exists r>0 : B(p, 5 \cdot r) \subseteq U$. Sei:

$$
  \tilde\varrho \colon
  \begin{cases}
    \R^n &\to \R
    \\ x &\mapsto
    \begin{cases}
      \varrho \left(3 - \frac{|x-p|}{r} \right), & x\in U
      \\ 0, & \text{sonst}
    \end{cases}
    \quad \in C^\infty (\R^n, \R)
  \end{cases}
$$

$\exists p\in V\subset U:$

$$
  \tilde\varrho &=& 1 \quad \text{auf } V
  \\ \tilde\varrho &=& 0 \quad \text{auf } \R^n\setminus U
$$

TOOD Bildchen 8

Konstruiere $\varphi$:

$$
  \varphi(x) :=
  \begin{cases}
    \psi(x)\cdot \tilde\varrho(x) & x\in U
    \\ 0 & \text{sonst}
  \end{cases}
$$

Jetzt gilt:

$$
  \partial (\varphi|_U) &=&\partial ((\tilde\varrho \cdot \psi)|_U)
  \\&=&\partial (\tilde\varrho|_U \cdot \psi)
  \\&=& \underbrace{\tilde\varrho|_U(p)}_{=1} \cdot \partial(\psi) + \underbrace{\partial (\tilde\varrho|_U)}_{\overset{(*)}=0} \cdot \psi(p)
$$

Beweis von $(*)$:

Harry Fuchs's avatar
Harry Fuchs committed
363
Konstruiere $\rho \in C^\infty(U)$ wie $\tilde\varrho$. Aber jetzt mit $\rho = 0$ auf $U\setminus V$ und $\rho(p) = 1$. Es gilt $\rho(1-\tilde \varrho) = 0$.
Harry Fuchs's avatar
Harry Fuchs committed
364
365
366

TODO Bildchen 9

Harry Fuchs's avatar
Harry Fuchs committed
367
Daraus Folgt: $(\rho := \rho|_U)$
Harry Fuchs's avatar
Harry Fuchs committed
368
369

$$
Harry Fuchs's avatar
Harry Fuchs committed
370
371
372
373
  0 &=& \partial (\rho (1-\tilde \varrho))
  \\&=& \partial (\rho - \rho \tilde \varrho)
  \\&=& \partial (\rho) - \partial (\rho\tilde \varrho)
  \\&=& \partial(\rho) - \underbrace{\rho(p)}_{=1}\partial(\tilde \varrho) - \underbrace{\tilde\varrho(p)}_{=1}\partial (\rho)
Harry Fuchs's avatar
Harry Fuchs committed
374
375
376
  \\&=& -\partial (\tilde \varrho)
$$

Harry Fuchs's avatar
Harry Fuchs committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
%2019-10-24

Wiederholung letztes mal:

Sei $p\in \R^n$, $T_p\R^n=\{ \partial \colon C^\infty \to \R \ |\ \partial \text{ Derivation an } p \}$. Das heißt:

 1. $\partial$ linear
 2. $\partial(f\cdot g) = f(p) \cdot \partial(g) + g(p)\cdot \partial(f)$

$U\subseteq \R^n$ offen, $p\in U$

$$
  T_pU = \{ \partial \colon C^\infty(U) \to \R \ |\ \partial \text{ Derivation an } p\}
$$

$\varepsilon \colon C^\infty(\R^n) \to C^\infty(U)$ Einschränkungsabbildung

$\varepsilon^*\colon T_pU \to T_p\R^n : \partial \mapsto \partial \circ \varepsilon$ duale Abbildung. letztes mal: $\varepsilon^*$ surjektiv. Für Injektivität: Es reicht zu zeigen:

$$
  \forall \partial \in T_pU, \psi\in C^\infty(U) \exists \varphi\in C^\infty(\R^n)
$$

mit $\partial(\psi) = \partial(\varphi|_U)$. Dazu $\varrho\in C^\infty(\R)$, $\varrho(x)\geqslant 0\forall x\in\R$:
$$
  \varrho|_{(-\infty, -1]}=0, \quad \varrho|_{[1,+\infty)}=1
$$

TODO Bildchen 10

NEU: (Alternativ Beweis zum letzten Beweis):

Zudem sei $\sqrt{\varrho}\in C^\infty(\R)$, $\sqrt{1-p}\in C^\infty(\R)$. (das kriegt man wenn man statt $\varrho$, $\varrho^2$ nimmt oder mit Taylor)

Dann: $\exists r>0$ so dass $B(p, 5r)\subseteq U$, $B_{5r}(p)$

$$
  \tilde\varrho(x) = \begin{cases} \varrho\left( 3 -\frac{|x-p|}{r} \right) & x\in U \\ 0 & \text{sonst} \end{cases}
$$

Wir wollen zeigen: $\partial (\tilde\varrho)=0$, $[\varphi = \tilde\varrho \cdot \psi \text{ erfüllt dann das Gewünschte}]$

$$
  \partial(\tilde \varrho) &=& \partial \left( {\sqrt{\tilde p}}^2 \right)
  \\ &=& \partial \left( \sqrt{\tilde \varrho} \cdot \sqrt{\tilde \varrho} \right)
  \\ &=& \underbrace{\sqrt{\tilde\varrho (p)}}_{=1} \cdot \partial \left( \sqrt{\tilde p} \right) + \partial \left( \sqrt{\tilde p} \right) \cdot  \underbrace{\sqrt{\tilde\varrho (p)}}_{=1}
  \\ &=& 2 \partial \left(\sqrt{\tilde p}\right)
$$

$$
  0-\partial (\tilde \varrho) &=& \partial(1) - \partial (\tilde \varrho)
  \\&=& \partial (1-\tilde \varrho)
  \\&=& \partial({\sqrt{1-\tilde \varrho}}^2)
  \\&=& 2 \sqrt{ \smash{\underbrace{1-\tilde \varrho(p)}_{=0}} \vphantom{1-\tilde \varrho(p)} }\partial (\sqrt{1-\tilde\varrho})
  \\&=& 0
$$

Fazit: $\varepsilon^*\colon T_pU \to T_p\R^n$ ist ein Homomorpismus. „Tangentialraum ist lokal, sieht nicht was weit entfernt ist“

In der algebraischen Geometrie gibt es auch Tangentialräume aber da ist das kompliziert, weil es keine kompakt getragene Polynome gibt.

Sei $U\subseteq \R^n$, $V\subseteq\R^m$ offen, $f\colon U\to V$ (glatt)

* Definition: Pullback-Abbildung

Die Pullback-Abbildung zu $f$ ist

$$
  f^* \colon C^\infty(V) \to C^\infty(U) : \varphi \mapsto \varphi \circ f
$$

\begin{center}
  \begin{tikzcd}
  V \arrow[r, "\varphi"]                                      & \mathbb R \\
  U \arrow[u, "f"] \arrow[ru, "f^*(\varphi)=\varphi\circ f"'] &
  \end{tikzcd}
\end{center}

Beobachtung: $f^*$ ist Algebrenhomorphismus ($=$ ist linear und respektiert Produkte)

* Definition: Differential

Sei $U\subseteq \R^n$, $V\subseteq\R^m$ offen, $f\colon U\to V$ (glatt). Sei $p\in U$. Das Differential von $f$ an $p$ ist die Abbildung

$$
  \Diff_pf\colon
  \begin{cases}
    T_pU &\to T_{f(p)}V
    \\ \partial &\mapsto \partial \circ f^*
  \end{cases}
$$

das heißt:

$$
  [(\Diff_pf)(\partial)](\varphi) = \partial(\varphi\circ f) = \partial (f^*\varphi)
$$

Das Differential bildet Derivationen auf Derivationen ab. Zeige die Wohldefiniertheit:

\begin{center}
  \begin{tikzcd}
  C^\infty(V) \arrow[r, "f^*"] \arrow[rrd, "(\Diff_pf)(\partial)"'] & C^\infty(U) \arrow[rd, "\partial"] &           \\
                                                                &                                    & \mathbb R
  \end{tikzcd}
\end{center}

$(\Diff_pf)(\partial)$ ist linear, da Komposition linearer Abbildung.
Leibnitz Regel:

$$
  [(\Diff_pf)(\partial)](\varphi\cdot \psi)
  &=& \partial(f^*(\varphi \cdot \psi))
  \\&=& \partial((\varphi \cdot \psi)\circ f)
  \\&=& \partial((\varphi\circ f) \cdot (\psi \circ f) )
  \\&=& \partial((f^*\varphi) \cdot (f^*\psi))
  \\&=& (f^*\varphi)(p) \cdot \partial(f^*\psi) + (f^*\psi)(p) \cdot \partial(f^*\varphi)
  \\&=&\varphi(f(p))\cdot[(\Diff_pf)(\partial)](\psi) + \psi(f(p))\cdot[(\Diff_pf)(\partial)](\varphi)
$$

Vergleiche mit Definition aus Analysis:

\begin{center}
  \begin{tikzcd}
  \mathbb R^n \arrow[rrrr, "{f' = \left[\left.\frac{\partial f_i}{\partial x_j}\right|_p\right]_{i=1,\ldots,m\atop j=1,\ldots,n}}"] \arrow[d, "\cong"'] &  &  &  & \mathbb R^m                             \\
  T_p \mathbb R^n \arrow[d, "\cong"']                                                                                                                   &  &  &  & T_{f(p)}\mathbb R^m \arrow[u, "\cong"'] \\
  T_pU \arrow[rrrr, "\Diff_pf"]                                                                                                              &  &  &  & T_{f(p)}V \arrow[u, "\cong"']
  \end{tikzcd}
\end{center}

Es gilt für $\varphi\colon V\to\R$ glatt:

$$
  \R\ni\left( \left(\Diff_p f\right) \left[\left.\frac{\partial}{\partial x_j}\right|_{p}\right] \right) [\varphi]
  &=& \left.\frac{\partial}{\partial x_j}\right|_{p}(f^* \varphi)
  \\&=& \left.\frac{\partial}{\partial x_j}\right|_{p} (\varphi \circ f)
  \\&=& \left.\frac{\partial}{\partial x_j}\right|_{p} (\varphi \circ f)_1
  \\&\overset{\text{Kettenregel}}=& \begin{pmatrix} \left.\frac{\partial \varphi}{\partial y_1}\right|_{f(p)} & \hdots & \left.\frac{\partial \varphi}{\partial y_m}\right|_{f(p)}\end{pmatrix}
    \begin{pmatrix} \left.\frac{\partial f_1}{\partial x_j}\right|_{p} \\ \vdots \\ \left.\frac{\partial f_m}{\partial x_j}\right|_{p}\end{pmatrix}
  \\&=& \sum_{i=1}^m\left.\frac{\partial \varphi}{\partial y_i}\right|_{f(p)}\left.\frac{\partial f_i}{\partial x_j}\right|_p
  \\&=& \left(\sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)}\right)[\varphi]
$$

Das Diagramm wird mit den vorher konstruierten Isomophismen kommutativ.

\begin{center}
  \begin{tikzcd}
  U\subseteq \mathbb R^n \arrow[rrrrrr, "f"]                                &                                                                                                                                                       &  &   &  &                                         & V\subseteq \mathbb R^m                                                                                                                            \\
  e_j \arrow[dd, maps to] \arrow[rrrrrr, maps to]                           &                                                                                                                                                       &  &   &  &                                         & \left(\begin{matrix}\left.\frac{\partial f_i}{\partial x_1}\right|_p\\\vdots\\\left.\frac{\partial f_i}{\partial x_m}\right|_p\end{matrix}\right) \\
                                                                            & \mathbb R^n \arrow[rrrr, "{f' = \left[\left.\frac{\partial f_i}{\partial x_j}\right|_p\right]_{i=1,\ldots,m\atop j=1,\ldots,n}}"] \arrow[d, "\cong"'] &  &   &  & \mathbb R^m                             &                                                                                                                                                   \\
  {\partial_{(p,e_j)}} \arrow[d, maps to]                                   & T_p \mathbb R^n \arrow[d, "\cong"']                                                                                                                   &  & ! &  & T_{f(p)}\mathbb R^m \arrow[u, "\cong"'] & \sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)} \arrow[uu]                          \\
  {\varepsilon^*\left(\partial_{(p,e_j))}\right)} \arrow[rd, "="', no head] & T_pU \arrow[rrrr, "\Diff_pf"]                                                                                                              &  &   &  & T_{f(p)}V \arrow[u, "\cong"']           &                                                                                                                                                   \\
                                                                            & \left.\frac{\partial}{\partial x_j}\right|_p \arrow[rrrrr, maps to]                                                                            &  &   &  &                                         & \sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)} \arrow[uu, maps to]
  \end{tikzcd}
\end{center}

Das Differential aus der Analysis (Matrize) ist der Koordinatenausdruck von unserem Differential (Element eines Vektorraums).

$$
  \sum_{i=1}^m \underbrace{\left.\frac{\partial f_i}{\partial x_j}\right|_p}_{\text{Koordinate } \in \R} \cdot \underbrace{\left.\frac{\partial}{\partial y_i}\right|_{f(p)}}_{\text{Element aus Basis} }
$$

* Kettenregel

\begin{center}
  \begin{tikzcd}
  U \arrow[r, "f"] & V \arrow[r, "g"] & W \arrow[r, "\varphi"] & \mathbb R
  \end{tikzcd}
\end{center}

$$
  \Diff_p(g\circ f) = \Diff_{f(p)} g \circ \Diff_p f
$$

Beweis:

$$
  \left( \left( \Diff_{f(p)} g \circ \Diff_p f \right) (\partial) \right)[\varphi]
  &=& \left( \left( D_{f(p)}g \right) \left[ \left( D_pf \right) (\partial) \right] \right)[\varphi]
  \\&=&[(\Diff_p f)(\partial)] (\varphi\circ g)
  \\&=& \partial((\varphi\circ g)\circ f)
  \\&=& \partial(\varphi\circ(g\circ f))
  \\&=& \left[ \left( D_p (g\circ f) \right)(\partial) \right](\varphi)
$$

* Interpretation von Tangentialvektoren als „Geschwindigkeitsvektor“

Sei $\gamma\colon I\subseteq\R \to \R^n$ eine glatte Kurve, $I$ ein Intervall, $p=\gamma(t_0)\in \R^n$

TODO Bildchen 11

Es wäre $\Diff_{t_0} \gamma\colon T_{t_0}\R^1 \to T_{\gamma(t_0)}\R^n$. Es soll gelten $\dot\gamma(t_0)\in T_{\gamma(t_0)}\R^n$. Definiere deshalb:

$$
  \dot\gamma(t_0) := \left( D_{t_0}\gamma \right) \left( \frac{\partial}{\partial t} \right)
$$

Übung: Es gilt:

$$
  \{ \dot\gamma(t_0)\ |\ \gamma\colon I \subseteq R \text{ glatte Kurve mit } \gamma(t_0) = p \} = T_p\R^n
$$

* Satz über (inverse) implizite Funktionen

Sei $f\colon U\to V$ glatt, $U$, $V\subseteq\R^n$, $p\in U$ so dass:

$$
  D_p f\colon T_pU\to T_pV
$$

invertierbar ist. Dann ist $f$ lokal ein Diffeomorphismus:

$\exists U'\subseteq U$, $V'\subseteq V$ offen, $p\in U'$, so dass

$$
  f|_{U'} \colon U' \xrightarrow{\cong}V'
$$

Harry Fuchs's avatar
Harry Fuchs committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
ein Diffeomorphismus ist, das heißt glatte Abbildung mit glatter Inversen, d.h. $f\colon U'\to V'$ glatt, bijektiv, $f^{-1}\colon V'\to U'$ glatt.

%2019-10-25

Wir wollen jetzt Abbildungen $f\colon U\subseteq\R^n\to V\subseteq\R^m$ haben,

$$
  D_pf \colon \underbrace{T_pU}_{\cong \R^n} \to \underbrace{T_pV}_{\cong \R^m} \text{ linear}
$$

$\rightsquigarrow$ Was ist „bestmögliche“ Bedingung an $D_pf$, die schönes über $f$ impliziert?

Die „richtige“ Bedingung an $D_pf$ ist, „vollen Rang“ zu haben, das heißt:

$$
  \rg(D_pf) = \min \{m,n\}
$$

$\rightsquigarrow$ Es gibt zwei Varianten dieser Bedingung:

 1. $n\leqslant m$, $\rg(D_pf)=n \Leftrightarrow n\leqslant m$, $D_pf$ injektiv

    Beispiel: $\iota\colon \R^n\hookrightarrow \R^m$, $n\leqslant m$, die Einbettung in die $n$ ersten Koordinaten.

 2. $n\geqslant m$, $\rg(D_pf)=m \Leftrightarrow n\geqslant m$, $D_pf$ surjektiv

    Beispiel: $\pi\colon \R^n\twoheadrightarrow \R^m$, $m\leqslant n$, Projektion auf die $m$ letzten Koordinaten.

* Satz: Satz über implizite Funktionen

(ist quasi ein Analogon zu einer ähnlichen Aussage aus der linearen Algebra)

Sei $f\colon U\subseteq\R^n\to V\subseteq\R^m$, $U$, $V$ offen, $0\in U$, $f(0)=0\in V$.

 1. Wenn $n\leqslant m$, $\rg D_pf = n$, dann existiert eine offene Umgebung $V'\subseteq V$, $0\in V'$ und ein Diffeomorphismus $g\colon V'\subseteq \R^m\to V'' \subseteq\R^m$, $g(0)=0$ mit $g\circ f|^{V'} = \iota$, d.h. nach einem Koordinatewechsel $g$ wird $f$ zur kanonischen Einbettung $\iota$.

 2. Wenn $n\geqslant m$, $\rg(D_pf) =m$, dann existiert eine offene Umgebung $U'\subseteq U$, $0\in U'$ und ein Diffeomorphismus $h\colon U'' \to U'$, $h(0)=0$ mit $f\circ h=\pi$ (dort wo $g\circ f$ definiert ist)

Beweis:

Hauptidee: $\rg(D_0f)$ maximal $\Rightarrow \rg(D_0f)$ konstant in Umgebung der $0$

 1. ohne Einschränkung
    $$
      D_pf = \left[\begin{matrix} \frac{A}{*} \end{matrix}\right] \in \Mat_{m\times n}(\R), \quad \det A \neq 0
    $$
    (permutiere Koordinaten in $\R^m$)

    Dann folgt: $D_xf = \left[\begin{matrix} \frac{A(x)}{*} \end{matrix}\right]$, $\det A(x)\neq 0$ in Umgebung von $0$

    Definiere:

    $$
      \begin{cases}
        U\times \R^{m-n}\to \R^m
        \\ (x_1,\ldots x_n, x_{n+1}, \ldots, x_m) \mapsto f(x_1,\ldots, x_n) + (0,\ldots, 0, x_{n+1}, \ldots, x_m)
      \end{cases}
    $$

    $$
      D_0F =
        \begin{bmatrix}
          \begin{array}{c|c}
              A & 0 \\
            \hline
              * & \eins
          \end{array}
        \end{bmatrix}
    $$
    Aus dem Satz über inverse Finktionen folgt $F$ lokal invertierbar mit lokaler Inversen $g$

    $$
      g\circ f = g\circ F \circ \iota - \iota
    $$
 2. Beweis ist Übung

* Intermezzo: Topologische Räume

** Definition: Topologischer Raum

Ein topologischer Raum $(X,\tau)$ ist ein Paar aus einer Menge $X$ und einem System $\tau$ von Teilmengen von $X$ ($\mathrel{\hat=}$ „offene Mengen“) mit
 1. $\emptyset$, $X\in \pi$
 2. $(U_i)_{i\in I}\subseteq \tau \Rightarrow \bigcup_{i\in I}U_i \in \tau$
 3. $U_1, \ldots, U_n\in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$

Beispiel:

 1. $(X,d)$ metrischer Raum $\Rightarrow \tau_d := \{ U\subseteq X\ |\ \forall x\in U \exists r> 0 \colon B_r(x) \subseteq U \}$ die durch $d$ induzierte Topologie
 2. $(\R^n, d_2(x,y) = \lVert x-y \rVert_2) \rightsquigarrow (\R^n, \tau_{d_2})$
 2. $(\R^n, d_2(x,y) = \lVert x-y \rVert_1) \rightsquigarrow (\R^n, \tau_{d_2})$

    Es gilt $\tau_{d_2} = \tau_{d_1}$, da alle Normen äquivalent (vgl. Analysis4)

** Definition: Hausdorff-Raum

  Ein topologischer Raum $X$ heißt hausdorffsch, wenn
  $$
    \forall x, y \in X, x\neq y : \exists U_x, U_y \mathrel\text{offen} : U_x \cap U_y = \emptyset
  $$

  TODO Bildchen 12

** Definition: kompakter Hausdorff-Raum

  Ein Hausdorff-Raum $(X,\tau)$ heißt kompakt, wenn jede offene Überdeckung eine endliche Teilüberdeckung besitzt, d.h.

  $$
    \bigcup_{i\in I} U_i \supseteq X, U_i {\text{ offen }} \Rightarrow \exists i_1, \ldots, i_n \in I \mathrel{\text{mit}} \bigcup_{k=1}^n U_{i_k} \supseteq X
  $$

** Definition: Basis einer Topologie

Sei $(X,\tau)$ topologischer Raum. Ein System $\mathcal B\subseteq \tau$ von offenen Mengen heißt Basis der Topologie $\tau$, falls jedes $U\in \tau$ als Vereinigung $U=\bigcup_{i\in I}B_i$, $B_i\in \mathcal B$ dargestellt werden kann.

** Definition: 2. Abzählbarkeitsaxiom

Ein topologischer Raum ist zweitabzählbar bzw. erfüllt das 2. Abzählbarkeitsaxiom, wenn es eine abzählbare Basis der Topologie gibt.

Beispiel:

Der euklidische Topologische Raum $(\R^n, \tau)$ hat $\{ \underbrace{B(x,r)}_{= B_r(x)}\ |\ x\in \mathbb Q^n, r\in \mathbb Q_{>0} \}$ als Basis. $(\R^n,\tau)$ ist also zweitabzählbar.