edit-this-file.tex 9.59 KB
Newer Older
Harry Fuchs's avatar
Harry Fuchs committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
% \square?

%%%%%%%%%%%

* Meta-Infos

Übungen flexibel

** Skript

myfsr.de

- Skripte

- ganz unten

- Typos und Fehler gerne und bitte an Benedikt Bartsch. E-Mail-Adresse siehe:

 - https://myfsr.de/dokuwiki/doku.php?id=fsr:mitglieder

** Forum

physik.protagon.space

** Literatur

Walschap: Metric Structures in Differential Geometry

Spivac: Comprehensive Introduction to Differential Geometry, vol. I

Ben Andrews: Lectures on Differential Geometry

math-people.anu.edu.au/~andrews/DG

* Begriff Differentialgeometrie

Sie studiert Mannigfaltigkeiten. Mannigfaltigkeiten ist die Abstraktion einer (Hyper-)Fläche in $\mathbb R^n$, $n\in \mathbb N$.

TODO Bildchen 1

TODO Bildchen 2

Auf $U\cap V$ haben wir zwei Abbildungen:

\begin{center}
\begin{tikzcd}
                                                                            & U\cap V \arrow[ld, "X"'] \arrow[rd, "Y"] &                                                 \\
\underbrace{X(U\cap V)}_{\subseteq \mathbb R^2} \arrow[rr, "Y\circ X^{-1}"] &                                          & \underbrace{Y(U\cap V)}_{\subseteq \mathbb R^2}
\end{tikzcd}
\end{center}

Problem: bekannte Dinge aus der Analysis hängen meist von Koordinatensystemen ab.

Frage: Welche Größen sind koordinatenunabhängig?

* Tangentialvektoren in $\mathbb R^n$

** Notation

- $n$, $m \in \mathbb N$ seien ab jetzt natürliche Zahlen
- Alle Abbildungen $\mathbb R^n \to \mathbb R^m$ werden ab jetzt glatt vorrausgesetzt
- $f\colon U\to V$
 - $$
     D_xf = \left[ \frac{\partial f_i}{\partial x_j} (x) \right] \leftarrow \text{Matrix}
   $$
 - $$
     Df = \left[ \frac{\partial f_i}{\partial x_j} \right]\in M_{m\times n}(C^\infty(U))
   $$

TODO Bildchen 3

naive Vorstellung: ein Tangentialvektor an $p\in \mathbb R^n$ ist ein (gewähltes) Element $\xi \in\mathbb R^n$

Alle möglichen Tangentialvektoren an allen Punkten sind dann identifiziert mit

$$
  T\mathbb R^n := \mathbb R^n \times \mathbb R^n \ni (p, \xi)
$$

$\leftarrow$ Koordinatentransformation ändert Einträge

Basiswechselmatrix:

$$
\begin{blockarray}{ccc}
\begin{block}{[ccc]}
  \frac{\sqrt 3}{2} & \frac{1}{2} \\
  -\frac12 & \frac{\sqrt 3}{2} \\
\end{block}
\uparrow & \uparrow  \\
f_1 & f_2  \\
\end{blockarray}
$$

(in $E$-Koordinatensystem)

$\Rightarrow$

$$
  (B^{-1} \cdot p, B^{-1}\cdot \xi) = (p', \xi')
$$

$\leftarrow$ Koordinaten von $(p, \xi)$ in $\mathcal F$-Koordinatensystem.

TODO Bildchen 4

$$
  (p, \xi) \in T\mathbb R^n, \quad \varphi \colon \mathbb R^n \to \mathbb R
$$

Richtungsableitung

$$
  \underbrace{\partial_{\xi}\varphi}_{\text{Richtungsableitung}} := \underbrace{D_p \varphi}_{\text{Zeile}} \cdot \underbrace{\xi}_{\text{Spalte}} = D_p\varphi(\xi)\in \mathbb R
$$

Idee: benutze das als Definition
 - „ein Tangentialvektor ist das, was Funktionen ableitet“
 - „Tangentialvektor = Richtungsableitung“

Sei $(p, \xi) \in \mathbb R^n \times \mathbb R^n$ ein (in Koordinaten darstellbarer) Tangentialvektor

TODO Bildchen 5

$$
  \partial_{(\varphi, \xi)} \varphi &:=& D_p\varphi(\xi)
  \\&=& \sum_{i=1}^n \xi^i \frac{\partial \varphi}{\partial x^i}(p)
  \\&=&\left( \sum_{i=1}^n \xi^i \left.\frac{\partial}{\partial x^i}\right|_p \right)(\varphi)
$$

* Definition Derivation

Sei $p\in \mathbb R^n$. Eine Derivation an $p$ ist $\partial \colon C^\infty(\mathbb R^n)\xrightarrow{\text{linear}} \mathbb R$ mit

$$
  \partial (\varphi\cdot\psi) = \partial \varphi \cdot \psi(p) + \partial \psi \cdot \varphi(p)
$$

* Beispiel

$\forall (p, \xi)\in \mathbb R^n \times \mathbb R^n$, $\partial_{(p, \xi)} = \partial_{(p, \xi)}(\cdot)$ ist Derivation an $p$.

* Proposition

$\forall \partial \colon C^\infty(\mathbb R^n) \to \mathbb R$ Derivation in $p$: $\exists! \xi\in \mathbb R^n : \partial = \partial_{(p, \xi)}$

Beweis:

Seien $x^i \colon \R^n \to \R : (x^1, \ldots, x^n) \mapsto x^i$ Koordinatenabbildungen / Projektionen. Setze:

$$
  \xi_i := \partial (x^i)\in \R
$$

Zu zeigen:

$$
  \partial = \partial_{\left(p, \left( \begin{matrix} \xi_1 \\ \vdots \\ \xi_n \end{matrix} \right) \right)}
$$

Trick:

ein $\varphi \in C^\infty (\mathbb R^n)$ kann mit $\varphi_i(x)\in C^\infty(\R^n)$ sowie:

$$
  \varphi(x) = \varphi(p) + \sum_{i=1}^n \varphi_i(x) (x^i - p^i) \quad \text{fast Taylor}
$$

Beweis des Tricks:

$$
  \varphi (x) - \varphi(p) &=& \int_0^1 \frac{\partial \varphi(p+t(x-p))}{\partial t} \diffd t
  \\ &\overset{\text{Kettenregel + Skalarprodukt ausmultiplizieren }}=&
    \sum_{i=1}^n \int_0^1 \frac{\partial \varphi}{\partial x^i} (p+t(x-p))\cdot (x^i - p^i)\intd t
  \\&=&\sum_{i=1}^n (x^i-p^i) \underbrace{\int_0^1 \frac{\partial\varphi}{\partial x^i}(p+t(x-p))\intd t}_{=: \varphi_i(x)}
$$

$$
  \partial (1) = \partial (1\cdot 1) \overset{\text{Leibnitz}}= \partial (1) + \partial (1) \Rightarrow \partial (1) = 0
$$

$$
  \partial (\varphi) &=& \partial \left(\varphi(p) + \sum_{i=1}^n \varphi_i(x)\cdot(x^i - p^i)\right)
  \\&\overset{\text{Leibnitz, Linearität}}=& \sum_{i=1}^n \left( \partial (\varphi_i)(\underbrace{p^i -p^i}_{=0}) + \underbrace{\varphi_i(p) \partial (x^i}_{\xi_i} \underbrace{- p^i)}_{\text{konstant}} \right)
  \\&=&\sum_{i=1}^n \varphi_i(p) \xi_i
  \\&=& \sum_{i=1}^n \xi_i \frac{\partial \varphi}{\partial x^i}(p)
$$


Eindeutigkeit folgt aus der Linearität der Derivation:

$$
  &&\partial_{(p, \xi)} = \partial_{(p, \xi')}
  \\&\Rightarrow& \partial_{(p, \xi -\xi')} = 0
  \\&\Rightarrow&\forall i\in \mathbb N_{\leqslant n} : \xi^i - \xi^i = 0 (= \partial_{(p, \xi-\xi')}(x^i))
$$

$\square$

Fazit: Tangentialvektoren an $p\in \R^n\mathrel{\hat=}$ Derivation an $p$

* Definition: Tangentialraum

$$
  T_p\mathbb R^n := \{ \partial \colon C^\infty (\R^n) \to \R\ |\ \partial \text{ Derivation} \}
$$

** Bemerkung

 - Vektorraum, da Derivationen VR bilden
 - Beweis der Proposition liefert:
 $$
   T_p\R^n \cong \R^n, \quad \partial_{(p, \xi)} \mapsfrom\xi
 $$
 - $\dim (T_p\R^n)=n$

* Frage

Sei $p\in U\in \mathcal O(\R^n) \leftarrow \text{offenen Mengen}$. Was ist folgende Menge?
$$
  T_p U := \{ \partial \colon C^\infty (U) \to \R \ |\ \partial \text{ Derivation} \}
$$

* Behauptung/Intuition

Es gilt:

$$
  T_p U \cong T_p\mathbb R^n
$$

Beweis:

Definiere die duale Abbildung:

$$
  \varepsilon^* \colon
  \begin{cases}
    T_pU &\to T_p\R^n
    \\ \partial &\mapsto
      \begin{cases}
        C^\infty (\R^n) &\to C^\infty(U)
        \\ \varphi &\mapsto \partial (\varphi|_U)
      \end{cases}
  \end{cases}
$$

Zeige, dass $\varepsilon^*$ ein Isomophismus ist.

Sei

$$
  \varepsilon \colon
  \begin{cases}
    C^\infty (\R^n) &\to C^\infty(U)
    \\ \varphi &\mapsto \varphi|_U
  \end{cases}
$$

$\varepsilon^*$ ist surjektiv:

Sei $\xi\in \R^n$, $\partial_{(p,\xi)}\in T_p\R^n$. $\varepsilon^* (\underbrace{\partial_{(p, \xi)} }_{\in T_pU}) = \partial_{(p,\xi)}\in T_p\R^n$. Surjektivität ist relativ klar. Gibt es einen Unterschied zwischen $\partial_{(p, \xi)} \in T_pU$ und $\partial_{(p, \xi)} \in T_p\R^n$?

$\varepsilon^*$ ist injektiv:

$$
  &\Leftrightarrow& \ker(\varepsilon^*) = \{0\}
  \\ &\Leftrightarrow& \forall \partial \in \ker(\varepsilon^*) : \partial = 0
$$

Sei $\partial \in \ker(\varepsilon^*)$. Dann gilt für $\partial$:

$$
  &&\partial \in \ker(\varepsilon^*)
  \\&\Leftrightarrow& \varepsilon^*(\partial) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varphi|_U)) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varepsilon (\varphi))) = 0
  \\&\Leftrightarrow& \partial \circ \varepsilon = 0
  \\&\Leftrightarrow& \forall \varphi \in C^\infty (\R^n): \partial (\varphi|_U) = 0
$$

Es bleibt noch zu zeigen, dass:

$$
  \forall \psi\in C^\infty(U) \exists \varphi\in C^\infty(\mathbb R^n) : \partial (\psi) = \partial (\varphi|_U)
$$

denn dann:

$$
  \partial (\psi) = \partial (\varphi|_U) = 0
$$

Sei $\psi\in C^\infty(U)$. Sei

$$
  \chi(x) :=
  \begin{cases}
    0, & |x| \geqslant 1
    \\ \exp \left(\frac{1}{x^2-1}\right), & |x| < 1
  \end{cases}
  \quad \in C^\infty(\R^n)
$$

TODO Bildchen 6

die Hügelfunktion und

$$
  \varrho (x) :=\frac{\int_{-\infty}^x \chi(t) \intd t}{\int_{-\infty}^\infty \chi(t) \intd t}
$$

die Hangfunktion

TODO Bildchen 7

$U$ offen $\Rightarrow \exists r>0 : B(p, 5 \cdot r) \subseteq U$. Sei:

$$
  \tilde\varrho \colon
  \begin{cases}
    \R^n &\to \R
    \\ x &\mapsto
    \begin{cases}
      \varrho \left(3 - \frac{|x-p|}{r} \right), & x\in U
      \\ 0, & \text{sonst}
    \end{cases}
    \quad \in C^\infty (\R^n, \R)
  \end{cases}
$$

$\exists p\in V\subset U:$

$$
  \tilde\varrho &=& 1 \quad \text{auf } V
  \\ \tilde\varrho &=& 0 \quad \text{auf } \R^n\setminus U
$$

TOOD Bildchen 8

Konstruiere $\varphi$:

$$
  \varphi(x) :=
  \begin{cases}
    \psi(x)\cdot \tilde\varrho(x) & x\in U
    \\ 0 & \text{sonst}
  \end{cases}
$$

Jetzt gilt:

$$
  \partial (\varphi|_U) &=&\partial ((\tilde\varrho \cdot \psi)|_U)
  \\&=&\partial (\tilde\varrho|_U \cdot \psi)
  \\&=& \underbrace{\tilde\varrho|_U(p)}_{=1} \cdot \partial(\psi) + \underbrace{\partial (\tilde\varrho|_U)}_{\overset{(*)}=0} \cdot \psi(p)
$$

Beweis von $(*)$:

Konstruiere $\tilde{\tilde \varrho} \in C^\infty(U)$ wie $\tilde\varrho$. Aber jetzt mit $\tilde{\tilde \varrho} = 0$ auf $U\setminus V$ und $\tilde{\tilde \varrho}(p) = 1$. Es gilt $\tilde{\tilde \varrho}(1-\tilde \varrho) = 0$.

TODO Bildchen 9

Daraus Folgt: $(\tilde{\tilde \varrho} := \tilde{\tilde \varrho}|_U)$

$$
  0 &=& \partial (\tilde{\tilde \varrho} (1-\tilde \varrho))
  \\&=& \partial (\tilde{\tilde \varrho} - \tilde{\tilde \varrho} \tilde \varrho)
  \\&=& \partial (\tilde{\tilde \varrho}) - \partial (\tilde{\tilde \varrho}\tilde \varrho)
  \\&=& \partial(\tilde{\tilde \varrho}) - \underbrace{\tilde{\tilde \varrho}(p)}_{=1}\partial(\tilde \varrho) - \underbrace{\tilde\varrho(p)}_{=1}\partial (\tilde{\tilde \varrho})
  \\&=& -\partial (\tilde \varrho)
$$