edit-this-file.tex 9.59 KB
Newer Older
Harry Fuchs's avatar
Harry Fuchs committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
% \square?

%%%%%%%%%%%

* Meta-Infos

Übungen flexibel

** Skript

myfsr.de

- Skripte

- ganz unten

- Typos und Fehler gerne und bitte an Benedikt Bartsch. E-Mail-Adresse siehe:

 - https://myfsr.de/dokuwiki/doku.php?id=fsr:mitglieder

** Forum

physik.protagon.space

** Literatur

Walschap: Metric Structures in Differential Geometry

Spivac: Comprehensive Introduction to Differential Geometry, vol. I

Ben Andrews: Lectures on Differential Geometry

math-people.anu.edu.au/~andrews/DG

* Begriff Differentialgeometrie

Sie studiert Mannigfaltigkeiten. Mannigfaltigkeiten ist die Abstraktion einer (Hyper-)Fläche in $\mathbb R^n$, $n\in \mathbb N$.

TODO Bildchen 1

TODO Bildchen 2

Auf $U\cap V$ haben wir zwei Abbildungen:

\begin{center}
\begin{tikzcd}
                                                                            & U\cap V \arrow[ld, "X"'] \arrow[rd, "Y"] &                                                 \\
\underbrace{X(U\cap V)}_{\subseteq \mathbb R^2} \arrow[rr, "Y\circ X^{-1}"] &                                          & \underbrace{Y(U\cap V)}_{\subseteq \mathbb R^2}
\end{tikzcd}
\end{center}

Problem: bekannte Dinge aus der Analysis hängen meist von Koordinatensystemen ab.

Frage: Welche Größen sind koordinatenunabhängig?

* Tangentialvektoren in $\mathbb R^n$

** Notation

- $n$, $m \in \mathbb N$ seien ab jetzt natürliche Zahlen
- Alle Abbildungen $\mathbb R^n \to \mathbb R^m$ werden ab jetzt glatt vorrausgesetzt
- $f\colon U\to V$
 - $$
     D_xf = \left[ \frac{\partial f_i}{\partial x_j} (x) \right] \leftarrow \text{Matrix}
   $$
 - $$
     Df = \left[ \frac{\partial f_i}{\partial x_j} \right]\in M_{m\times n}(C^\infty(U))
   $$

TODO Bildchen 3

naive Vorstellung: ein Tangentialvektor an $p\in \mathbb R^n$ ist ein (gewähltes) Element $\xi \in\mathbb R^n$

Alle möglichen Tangentialvektoren an allen Punkten sind dann identifiziert mit

$$
  T\mathbb R^n := \mathbb R^n \times \mathbb R^n \ni (p, \xi)
$$

$\leftarrow$ Koordinatentransformation ändert Einträge

Basiswechselmatrix:

$$
\begin{blockarray}{ccc}
\begin{block}{[ccc]}
  \frac{\sqrt 3}{2} & \frac{1}{2} \\
  -\frac12 & \frac{\sqrt 3}{2} \\
\end{block}
\uparrow & \uparrow  \\
f_1 & f_2  \\
\end{blockarray}
$$

(in $E$-Koordinatensystem)

$\Rightarrow$

$$
  (B^{-1} \cdot p, B^{-1}\cdot \xi) = (p', \xi')
$$

$\leftarrow$ Koordinaten von $(p, \xi)$ in $\mathcal F$-Koordinatensystem.

TODO Bildchen 4

$$
  (p, \xi) \in T\mathbb R^n, \quad \varphi \colon \mathbb R^n \to \mathbb R
$$

Richtungsableitung

$$
  \underbrace{\partial_{\xi}\varphi}_{\text{Richtungsableitung}} := \underbrace{D_p \varphi}_{\text{Zeile}} \cdot \underbrace{\xi}_{\text{Spalte}} = D_p\varphi(\xi)\in \mathbb R
$$

Idee: benutze das als Definition
 - „ein Tangentialvektor ist das, was Funktionen ableitet“
 - „Tangentialvektor = Richtungsableitung“

Sei $(p, \xi) \in \mathbb R^n \times \mathbb R^n$ ein (in Koordinaten darstellbarer) Tangentialvektor

TODO Bildchen 5

$$
  \partial_{(\varphi, \xi)} \varphi &:=& D_p\varphi(\xi)
  \\&=& \sum_{i=1}^n \xi^i \frac{\partial \varphi}{\partial x^i}(p)
  \\&=&\left( \sum_{i=1}^n \xi^i \left.\frac{\partial}{\partial x^i}\right|_p \right)(\varphi)
$$

* Definition Derivation

Sei $p\in \mathbb R^n$. Eine Derivation an $p$ ist $\partial \colon C^\infty(\mathbb R^n)\xrightarrow{\text{linear}} \mathbb R$ mit

$$
  \partial (\varphi\cdot\psi) = \partial \varphi \cdot \psi(p) + \partial \psi \cdot \varphi(p)
$$

* Beispiel

$\forall (p, \xi)\in \mathbb R^n \times \mathbb R^n$, $\partial_{(p, \xi)} = \partial_{(p, \xi)}(\cdot)$ ist Derivation an $p$.

* Proposition

$\forall \partial \colon C^\infty(\mathbb R^n) \to \mathbb R$ Derivation in $p$: $\exists! \xi\in \mathbb R^n : \partial = \partial_{(p, \xi)}$

Beweis:

Seien $x^i \colon \R^n \to \R : (x^1, \ldots, x^n) \mapsto x^i$ Koordinatenabbildungen / Projektionen. Setze:

$$
  \xi_i := \partial (x^i)\in \R
$$

Zu zeigen:

$$
  \partial = \partial_{\left(p, \left( \begin{matrix} \xi_1 \\ \vdots \\ \xi_n \end{matrix} \right) \right)}
$$

Trick:

ein $\varphi \in C^\infty (\mathbb R^n)$ kann mit $\varphi_i(x)\in C^\infty(\R^n)$ sowie:

$$
  \varphi(x) = \varphi(p) + \sum_{i=1}^n \varphi_i(x) (x^i - p^i) \quad \text{fast Taylor}
$$

Beweis des Tricks:

$$
  \varphi (x) - \varphi(p) &=& \int_0^1 \frac{\partial \varphi(p+t(x-p))}{\partial t} \diffd t
  \\ &\overset{\text{Kettenregel + Skalarprodukt ausmultiplizieren }}=&
    \sum_{i=1}^n \int_0^1 \frac{\partial \varphi}{\partial x^i} (p+t(x-p))\cdot (x^i - p^i)\intd t
  \\&=&\sum_{i=1}^n (x^i-p^i) \underbrace{\int_0^1 \frac{\partial\varphi}{\partial x^i}(p+t(x-p))\intd t}_{=: \varphi_i(x)}
$$

$$
  \partial (1) = \partial (1\cdot 1) \overset{\text{Leibnitz}}= \partial (1) + \partial (1) \Rightarrow \partial (1) = 0
$$

$$
  \partial (\varphi) &=& \partial \left(\varphi(p) + \sum_{i=1}^n \varphi_i(x)\cdot(x^i - p^i)\right)
  \\&\overset{\text{Leibnitz, Linearität}}=& \sum_{i=1}^n \left( \partial (\varphi_i)(\underbrace{p^i -p^i}_{=0}) + \underbrace{\varphi_i(p) \partial (x^i}_{\xi_i} \underbrace{- p^i)}_{\text{konstant}} \right)
  \\&=&\sum_{i=1}^n \varphi_i(p) \xi_i
  \\&=& \sum_{i=1}^n \xi_i \frac{\partial \varphi}{\partial x^i}(p)
$$


Eindeutigkeit folgt aus der Linearität der Derivation:

$$
  &&\partial_{(p, \xi)} = \partial_{(p, \xi')}
  \\&\Rightarrow& \partial_{(p, \xi -\xi')} = 0
  \\&\Rightarrow&\forall i\in \mathbb N_{\leqslant n} : \xi^i - \xi^i = 0 (= \partial_{(p, \xi-\xi')}(x^i))
$$

$\square$

Fazit: Tangentialvektoren an $p\in \R^n\mathrel{\hat=}$ Derivation an $p$

* Definition: Tangentialraum

$$
  T_p\mathbb R^n := \{ \partial \colon C^\infty (\R^n) \to \R\ |\ \partial \text{ Derivation} \}
$$

** Bemerkung

 - Vektorraum, da Derivationen VR bilden
 - Beweis der Proposition liefert:
 $$
   T_p\R^n \cong \R^n, \quad \partial_{(p, \xi)} \mapsfrom\xi
 $$
 - $\dim (T_p\R^n)=n$

* Frage

Sei $p\in U\in \mathcal O(\R^n) \leftarrow \text{offenen Mengen}$. Was ist folgende Menge?
$$
  T_p U := \{ \partial \colon C^\infty (U) \to \R \ |\ \partial \text{ Derivation} \}
$$

* Behauptung/Intuition

Es gilt:

$$
  T_p U \cong T_p\mathbb R^n
$$

Beweis:

Definiere die duale Abbildung:

$$
  \varepsilon^* \colon
  \begin{cases}
    T_pU &\to T_p\R^n
    \\ \partial &\mapsto
      \begin{cases}
        C^\infty (\R^n) &\to C^\infty(U)
        \\ \varphi &\mapsto \partial (\varphi|_U)
      \end{cases}
  \end{cases}
$$

Zeige, dass $\varepsilon^*$ ein Isomophismus ist.

Sei

$$
  \varepsilon \colon
  \begin{cases}
    C^\infty (\R^n) &\to C^\infty(U)
    \\ \varphi &\mapsto \varphi|_U
  \end{cases}
$$

$\varepsilon^*$ ist surjektiv:

Sei $\xi\in \R^n$, $\partial_{(p,\xi)}\in T_p\R^n$. $\varepsilon^* (\underbrace{\partial_{(p, \xi)} }_{\in T_pU}) = \partial_{(p,\xi)}\in T_p\R^n$. Surjektivität ist relativ klar. Gibt es einen Unterschied zwischen $\partial_{(p, \xi)} \in T_pU$ und $\partial_{(p, \xi)} \in T_p\R^n$?

$\varepsilon^*$ ist injektiv:

$$
  &\Leftrightarrow& \ker(\varepsilon^*) = \{0\}
  \\ &\Leftrightarrow& \forall \partial \in \ker(\varepsilon^*) : \partial = 0
$$

Sei $\partial \in \ker(\varepsilon^*)$. Dann gilt für $\partial$:

$$
  &&\partial \in \ker(\varepsilon^*)
  \\&\Leftrightarrow& \varepsilon^*(\partial) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varphi|_U)) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varepsilon (\varphi))) = 0
  \\&\Leftrightarrow& \partial \circ \varepsilon = 0
  \\&\Leftrightarrow& \forall \varphi \in C^\infty (\R^n): \partial (\varphi|_U) = 0
$$

Es bleibt noch zu zeigen, dass:

$$
  \forall \psi\in C^\infty(U) \exists \varphi\in C^\infty(\mathbb R^n) : \partial (\psi) = \partial (\varphi|_U)
$$

denn dann:

$$
  \partial (\psi) = \partial (\varphi|_U) = 0
$$

Sei $\psi\in C^\infty(U)$. Sei

$$
  \chi(x) :=
  \begin{cases}
    0, & |x| \geqslant 1
    \\ \exp \left(\frac{1}{x^2-1}\right), & |x| < 1
  \end{cases}
  \quad \in C^\infty(\R^n)
$$

TODO Bildchen 6

die Hügelfunktion und

$$
  \varrho (x) :=\frac{\int_{-\infty}^x \chi(t) \intd t}{\int_{-\infty}^\infty \chi(t) \intd t}
$$

die Hangfunktion

TODO Bildchen 7

$U$ offen $\Rightarrow \exists r>0 : B(p, 5 \cdot r) \subseteq U$. Sei:

$$
  \tilde\varrho \colon
  \begin{cases}
    \R^n &\to \R
    \\ x &\mapsto
    \begin{cases}
      \varrho \left(3 - \frac{|x-p|}{r} \right), & x\in U
      \\ 0, & \text{sonst}
    \end{cases}
    \quad \in C^\infty (\R^n, \R)
  \end{cases}
$$

$\exists p\in V\subset U:$

$$
  \tilde\varrho &=& 1 \quad \text{auf } V
  \\ \tilde\varrho &=& 0 \quad \text{auf } \R^n\setminus U
$$

TOOD Bildchen 8

Konstruiere $\varphi$:

$$
  \varphi(x) :=
  \begin{cases}
    \psi(x)\cdot \tilde\varrho(x) & x\in U
    \\ 0 & \text{sonst}
  \end{cases}
$$

Jetzt gilt:

$$
  \partial (\varphi|_U) &=&\partial ((\tilde\varrho \cdot \psi)|_U)
  \\&=&\partial (\tilde\varrho|_U \cdot \psi)
  \\&=& \underbrace{\tilde\varrho|_U(p)}_{=1} \cdot \partial(\psi) + \underbrace{\partial (\tilde\varrho|_U)}_{\overset{(*)}=0} \cdot \psi(p)
$$

Beweis von $(*)$:

Konstruiere $\tilde{\tilde \varrho} \in C^\infty(U)$ wie $\tilde\varrho$. Aber jetzt mit $\tilde{\tilde \varrho} = 0$ auf $U\setminus V$ und $\tilde{\tilde \varrho}(p) = 1$. Es gilt $\tilde{\tilde \varrho}(1-\tilde \varrho) = 0$.

TODO Bildchen 9

Daraus Folgt: $(\tilde{\tilde \varrho} := \tilde{\tilde \varrho}|_U)$

$$
  0 &=& \partial (\tilde{\tilde \varrho} (1-\tilde \varrho))
  \\&=& \partial (\tilde{\tilde \varrho} - \tilde{\tilde \varrho} \tilde \varrho)
  \\&=& \partial (\tilde{\tilde \varrho}) - \partial (\tilde{\tilde \varrho}\tilde \varrho)
  \\&=& \partial(\tilde{\tilde \varrho}) - \underbrace{\tilde{\tilde \varrho}(p)}_{=1}\partial(\tilde \varrho) - \underbrace{\tilde\varrho(p)}_{=1}\partial (\tilde{\tilde \varrho})
  \\&=& -\partial (\tilde \varrho)
$$