edit-this-file.tex 19.8 KB
Newer Older
Harry Fuchs's avatar
Harry Fuchs committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
% \square?

%%%%%%%%%%%

* Meta-Infos

Übungen flexibel

** Skript

myfsr.de

- Skripte

- ganz unten

- Typos und Fehler gerne und bitte an Benedikt Bartsch. E-Mail-Adresse siehe:

 - https://myfsr.de/dokuwiki/doku.php?id=fsr:mitglieder

** Forum

physik.protagon.space

** Literatur

Walschap: Metric Structures in Differential Geometry

Spivac: Comprehensive Introduction to Differential Geometry, vol. I

Ben Andrews: Lectures on Differential Geometry

math-people.anu.edu.au/~andrews/DG

* Begriff Differentialgeometrie

Sie studiert Mannigfaltigkeiten. Mannigfaltigkeiten ist die Abstraktion einer (Hyper-)Fläche in $\mathbb R^n$, $n\in \mathbb N$.

TODO Bildchen 1

TODO Bildchen 2

Auf $U\cap V$ haben wir zwei Abbildungen:

\begin{center}
\begin{tikzcd}
                                                                            & U\cap V \arrow[ld, "X"'] \arrow[rd, "Y"] &                                                 \\
\underbrace{X(U\cap V)}_{\subseteq \mathbb R^2} \arrow[rr, "Y\circ X^{-1}"] &                                          & \underbrace{Y(U\cap V)}_{\subseteq \mathbb R^2}
\end{tikzcd}
\end{center}

Problem: bekannte Dinge aus der Analysis hängen meist von Koordinatensystemen ab.

Frage: Welche Größen sind koordinatenunabhängig?

* Tangentialvektoren in $\mathbb R^n$

** Notation

- $n$, $m \in \mathbb N$ seien ab jetzt natürliche Zahlen
Harry Fuchs's avatar
Harry Fuchs committed
61
- Alle Abbildungen $\mathbb R^n \to \mathbb R^m$ -- auch mit Einschränkungen der Bilder und Urbiler dieser -- werden ab jetzt glatt vorrausgesetzt
Harry Fuchs's avatar
Harry Fuchs committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
- $f\colon U\to V$
 - $$
     D_xf = \left[ \frac{\partial f_i}{\partial x_j} (x) \right] \leftarrow \text{Matrix}
   $$
 - $$
     Df = \left[ \frac{\partial f_i}{\partial x_j} \right]\in M_{m\times n}(C^\infty(U))
   $$

TODO Bildchen 3

naive Vorstellung: ein Tangentialvektor an $p\in \mathbb R^n$ ist ein (gewähltes) Element $\xi \in\mathbb R^n$

Alle möglichen Tangentialvektoren an allen Punkten sind dann identifiziert mit

$$
  T\mathbb R^n := \mathbb R^n \times \mathbb R^n \ni (p, \xi)
$$

$\leftarrow$ Koordinatentransformation ändert Einträge

Basiswechselmatrix:

$$
\begin{blockarray}{ccc}
\begin{block}{[ccc]}
  \frac{\sqrt 3}{2} & \frac{1}{2} \\
  -\frac12 & \frac{\sqrt 3}{2} \\
\end{block}
\uparrow & \uparrow  \\
f_1 & f_2  \\
\end{blockarray}
$$

(in $E$-Koordinatensystem)

$\Rightarrow$

$$
  (B^{-1} \cdot p, B^{-1}\cdot \xi) = (p', \xi')
$$

$\leftarrow$ Koordinaten von $(p, \xi)$ in $\mathcal F$-Koordinatensystem.

TODO Bildchen 4

$$
  (p, \xi) \in T\mathbb R^n, \quad \varphi \colon \mathbb R^n \to \mathbb R
$$

Richtungsableitung

$$
  \underbrace{\partial_{\xi}\varphi}_{\text{Richtungsableitung}} := \underbrace{D_p \varphi}_{\text{Zeile}} \cdot \underbrace{\xi}_{\text{Spalte}} = D_p\varphi(\xi)\in \mathbb R
$$

Idee: benutze das als Definition
 - „ein Tangentialvektor ist das, was Funktionen ableitet“
 - „Tangentialvektor = Richtungsableitung“

Harry Fuchs's avatar
Harry Fuchs committed
121 122
%2019-10-18

Harry Fuchs's avatar
Harry Fuchs committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
Sei $(p, \xi) \in \mathbb R^n \times \mathbb R^n$ ein (in Koordinaten darstellbarer) Tangentialvektor

TODO Bildchen 5

$$
  \partial_{(\varphi, \xi)} \varphi &:=& D_p\varphi(\xi)
  \\&=& \sum_{i=1}^n \xi^i \frac{\partial \varphi}{\partial x^i}(p)
  \\&=&\left( \sum_{i=1}^n \xi^i \left.\frac{\partial}{\partial x^i}\right|_p \right)(\varphi)
$$

* Definition Derivation

Sei $p\in \mathbb R^n$. Eine Derivation an $p$ ist $\partial \colon C^\infty(\mathbb R^n)\xrightarrow{\text{linear}} \mathbb R$ mit

$$
  \partial (\varphi\cdot\psi) = \partial \varphi \cdot \psi(p) + \partial \psi \cdot \varphi(p)
$$

* Beispiel

$\forall (p, \xi)\in \mathbb R^n \times \mathbb R^n$, $\partial_{(p, \xi)} = \partial_{(p, \xi)}(\cdot)$ ist Derivation an $p$.

* Proposition

$\forall \partial \colon C^\infty(\mathbb R^n) \to \mathbb R$ Derivation in $p$: $\exists! \xi\in \mathbb R^n : \partial = \partial_{(p, \xi)}$

Beweis:

Seien $x^i \colon \R^n \to \R : (x^1, \ldots, x^n) \mapsto x^i$ Koordinatenabbildungen / Projektionen. Setze:

$$
  \xi_i := \partial (x^i)\in \R
$$

Zu zeigen:

$$
  \partial = \partial_{\left(p, \left( \begin{matrix} \xi_1 \\ \vdots \\ \xi_n \end{matrix} \right) \right)}
$$

Trick:

ein $\varphi \in C^\infty (\mathbb R^n)$ kann mit $\varphi_i(x)\in C^\infty(\R^n)$ sowie:

$$
  \varphi(x) = \varphi(p) + \sum_{i=1}^n \varphi_i(x) (x^i - p^i) \quad \text{fast Taylor}
$$

Beweis des Tricks:

$$
  \varphi (x) - \varphi(p) &=& \int_0^1 \frac{\partial \varphi(p+t(x-p))}{\partial t} \diffd t
  \\ &\overset{\text{Kettenregel + Skalarprodukt ausmultiplizieren }}=&
    \sum_{i=1}^n \int_0^1 \frac{\partial \varphi}{\partial x^i} (p+t(x-p))\cdot (x^i - p^i)\intd t
  \\&=&\sum_{i=1}^n (x^i-p^i) \underbrace{\int_0^1 \frac{\partial\varphi}{\partial x^i}(p+t(x-p))\intd t}_{=: \varphi_i(x)}
$$

$$
  \partial (1) = \partial (1\cdot 1) \overset{\text{Leibnitz}}= \partial (1) + \partial (1) \Rightarrow \partial (1) = 0
$$

$$
  \partial (\varphi) &=& \partial \left(\varphi(p) + \sum_{i=1}^n \varphi_i(x)\cdot(x^i - p^i)\right)
  \\&\overset{\text{Leibnitz, Linearität}}=& \sum_{i=1}^n \left( \partial (\varphi_i)(\underbrace{p^i -p^i}_{=0}) + \underbrace{\varphi_i(p) \partial (x^i}_{\xi_i} \underbrace{- p^i)}_{\text{konstant}} \right)
  \\&=&\sum_{i=1}^n \varphi_i(p) \xi_i
  \\&=& \sum_{i=1}^n \xi_i \frac{\partial \varphi}{\partial x^i}(p)
$$


Eindeutigkeit folgt aus der Linearität der Derivation:

$$
  &&\partial_{(p, \xi)} = \partial_{(p, \xi')}
  \\&\Rightarrow& \partial_{(p, \xi -\xi')} = 0
  \\&\Rightarrow&\forall i\in \mathbb N_{\leqslant n} : \xi^i - \xi^i = 0 (= \partial_{(p, \xi-\xi')}(x^i))
$$

$\square$

Fazit: Tangentialvektoren an $p\in \R^n\mathrel{\hat=}$ Derivation an $p$

* Definition: Tangentialraum

$$
  T_p\mathbb R^n := \{ \partial \colon C^\infty (\R^n) \to \R\ |\ \partial \text{ Derivation} \}
$$

** Bemerkung

 - Vektorraum, da Derivationen VR bilden
 - Beweis der Proposition liefert:
 $$
   T_p\R^n \cong \R^n, \quad \partial_{(p, \xi)} \mapsfrom\xi
 $$
 - $\dim (T_p\R^n)=n$

* Frage

Sei $p\in U\in \mathcal O(\R^n) \leftarrow \text{offenen Mengen}$. Was ist folgende Menge?
$$
  T_p U := \{ \partial \colon C^\infty (U) \to \R \ |\ \partial \text{ Derivation} \}
$$

* Behauptung/Intuition

Es gilt:

$$
  T_p U \cong T_p\mathbb R^n
$$

Beweis:

Definiere die duale Abbildung:

$$
  \varepsilon^* \colon
  \begin{cases}
    T_pU &\to T_p\R^n
    \\ \partial &\mapsto
      \begin{cases}
        C^\infty (\R^n) &\to C^\infty(U)
        \\ \varphi &\mapsto \partial (\varphi|_U)
      \end{cases}
  \end{cases}
$$

Zeige, dass $\varepsilon^*$ ein Isomophismus ist.

Sei

$$
  \varepsilon \colon
  \begin{cases}
    C^\infty (\R^n) &\to C^\infty(U)
    \\ \varphi &\mapsto \varphi|_U
  \end{cases}
$$

$\varepsilon^*$ ist surjektiv:

Sei $\xi\in \R^n$, $\partial_{(p,\xi)}\in T_p\R^n$. $\varepsilon^* (\underbrace{\partial_{(p, \xi)} }_{\in T_pU}) = \partial_{(p,\xi)}\in T_p\R^n$. Surjektivität ist relativ klar. Gibt es einen Unterschied zwischen $\partial_{(p, \xi)} \in T_pU$ und $\partial_{(p, \xi)} \in T_p\R^n$?

$\varepsilon^*$ ist injektiv:

$$
  &\Leftrightarrow& \ker(\varepsilon^*) = \{0\}
  \\ &\Leftrightarrow& \forall \partial \in \ker(\varepsilon^*) : \partial = 0
$$

Sei $\partial \in \ker(\varepsilon^*)$. Dann gilt für $\partial$:

$$
  &&\partial \in \ker(\varepsilon^*)
  \\&\Leftrightarrow& \varepsilon^*(\partial) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varphi|_U)) = 0
  \\&\Leftrightarrow& (\varphi \mapsto \partial (\varepsilon (\varphi))) = 0
  \\&\Leftrightarrow& \partial \circ \varepsilon = 0
  \\&\Leftrightarrow& \forall \varphi \in C^\infty (\R^n): \partial (\varphi|_U) = 0
$$

Es bleibt noch zu zeigen, dass:

$$
  \forall \psi\in C^\infty(U) \exists \varphi\in C^\infty(\mathbb R^n) : \partial (\psi) = \partial (\varphi|_U)
$$

denn dann:

$$
  \partial (\psi) = \partial (\varphi|_U) = 0
$$

Sei $\psi\in C^\infty(U)$. Sei

$$
  \chi(x) :=
  \begin{cases}
    0, & |x| \geqslant 1
    \\ \exp \left(\frac{1}{x^2-1}\right), & |x| < 1
  \end{cases}
  \quad \in C^\infty(\R^n)
$$

TODO Bildchen 6

die Hügelfunktion und

$$
  \varrho (x) :=\frac{\int_{-\infty}^x \chi(t) \intd t}{\int_{-\infty}^\infty \chi(t) \intd t}
$$

die Hangfunktion

TODO Bildchen 7

$U$ offen $\Rightarrow \exists r>0 : B(p, 5 \cdot r) \subseteq U$. Sei:

$$
  \tilde\varrho \colon
  \begin{cases}
    \R^n &\to \R
    \\ x &\mapsto
    \begin{cases}
      \varrho \left(3 - \frac{|x-p|}{r} \right), & x\in U
      \\ 0, & \text{sonst}
    \end{cases}
    \quad \in C^\infty (\R^n, \R)
  \end{cases}
$$

$\exists p\in V\subset U:$

$$
  \tilde\varrho &=& 1 \quad \text{auf } V
  \\ \tilde\varrho &=& 0 \quad \text{auf } \R^n\setminus U
$$

TOOD Bildchen 8

Konstruiere $\varphi$:

$$
  \varphi(x) :=
  \begin{cases}
    \psi(x)\cdot \tilde\varrho(x) & x\in U
    \\ 0 & \text{sonst}
  \end{cases}
$$

Jetzt gilt:

$$
  \partial (\varphi|_U) &=&\partial ((\tilde\varrho \cdot \psi)|_U)
  \\&=&\partial (\tilde\varrho|_U \cdot \psi)
  \\&=& \underbrace{\tilde\varrho|_U(p)}_{=1} \cdot \partial(\psi) + \underbrace{\partial (\tilde\varrho|_U)}_{\overset{(*)}=0} \cdot \psi(p)
$$

Beweis von $(*)$:

Harry Fuchs's avatar
Harry Fuchs committed
363
Konstruiere $\rho \in C^\infty(U)$ wie $\tilde\varrho$. Aber jetzt mit $\rho = 0$ auf $U\setminus V$ und $\rho(p) = 1$. Es gilt $\rho(1-\tilde \varrho) = 0$.
Harry Fuchs's avatar
Harry Fuchs committed
364 365 366

TODO Bildchen 9

Harry Fuchs's avatar
Harry Fuchs committed
367
Daraus Folgt: $(\rho := \rho|_U)$
Harry Fuchs's avatar
Harry Fuchs committed
368 369

$$
Harry Fuchs's avatar
Harry Fuchs committed
370 371 372 373
  0 &=& \partial (\rho (1-\tilde \varrho))
  \\&=& \partial (\rho - \rho \tilde \varrho)
  \\&=& \partial (\rho) - \partial (\rho\tilde \varrho)
  \\&=& \partial(\rho) - \underbrace{\rho(p)}_{=1}\partial(\tilde \varrho) - \underbrace{\tilde\varrho(p)}_{=1}\partial (\rho)
Harry Fuchs's avatar
Harry Fuchs committed
374 375 376
  \\&=& -\partial (\tilde \varrho)
$$

Harry Fuchs's avatar
Harry Fuchs committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
%2019-10-24

Wiederholung letztes mal:

Sei $p\in \R^n$, $T_p\R^n=\{ \partial \colon C^\infty \to \R \ |\ \partial \text{ Derivation an } p \}$. Das heißt:

 1. $\partial$ linear
 2. $\partial(f\cdot g) = f(p) \cdot \partial(g) + g(p)\cdot \partial(f)$

$U\subseteq \R^n$ offen, $p\in U$

$$
  T_pU = \{ \partial \colon C^\infty(U) \to \R \ |\ \partial \text{ Derivation an } p\}
$$

$\varepsilon \colon C^\infty(\R^n) \to C^\infty(U)$ Einschränkungsabbildung

$\varepsilon^*\colon T_pU \to T_p\R^n : \partial \mapsto \partial \circ \varepsilon$ duale Abbildung. letztes mal: $\varepsilon^*$ surjektiv. Für Injektivität: Es reicht zu zeigen:

$$
  \forall \partial \in T_pU, \psi\in C^\infty(U) \exists \varphi\in C^\infty(\R^n)
$$

mit $\partial(\psi) = \partial(\varphi|_U)$. Dazu $\varrho\in C^\infty(\R)$, $\varrho(x)\geqslant 0\forall x\in\R$:
$$
  \varrho|_{(-\infty, -1]}=0, \quad \varrho|_{[1,+\infty)}=1
$$

TODO Bildchen 10

NEU: (Alternativ Beweis zum letzten Beweis):

Zudem sei $\sqrt{\varrho}\in C^\infty(\R)$, $\sqrt{1-p}\in C^\infty(\R)$. (das kriegt man wenn man statt $\varrho$, $\varrho^2$ nimmt oder mit Taylor)

Dann: $\exists r>0$ so dass $B(p, 5r)\subseteq U$, $B_{5r}(p)$

$$
  \tilde\varrho(x) = \begin{cases} \varrho\left( 3 -\frac{|x-p|}{r} \right) & x\in U \\ 0 & \text{sonst} \end{cases}
$$

Wir wollen zeigen: $\partial (\tilde\varrho)=0$, $[\varphi = \tilde\varrho \cdot \psi \text{ erfüllt dann das Gewünschte}]$

$$
  \partial(\tilde \varrho) &=& \partial \left( {\sqrt{\tilde p}}^2 \right)
  \\ &=& \partial \left( \sqrt{\tilde \varrho} \cdot \sqrt{\tilde \varrho} \right)
  \\ &=& \underbrace{\sqrt{\tilde\varrho (p)}}_{=1} \cdot \partial \left( \sqrt{\tilde p} \right) + \partial \left( \sqrt{\tilde p} \right) \cdot  \underbrace{\sqrt{\tilde\varrho (p)}}_{=1}
  \\ &=& 2 \partial \left(\sqrt{\tilde p}\right)
$$

$$
  0-\partial (\tilde \varrho) &=& \partial(1) - \partial (\tilde \varrho)
  \\&=& \partial (1-\tilde \varrho)
  \\&=& \partial({\sqrt{1-\tilde \varrho}}^2)
  \\&=& 2 \sqrt{ \smash{\underbrace{1-\tilde \varrho(p)}_{=0}} \vphantom{1-\tilde \varrho(p)} }\partial (\sqrt{1-\tilde\varrho})
  \\&=& 0
$$

Fazit: $\varepsilon^*\colon T_pU \to T_p\R^n$ ist ein Homomorpismus. „Tangentialraum ist lokal, sieht nicht was weit entfernt ist“

In der algebraischen Geometrie gibt es auch Tangentialräume aber da ist das kompliziert, weil es keine kompakt getragene Polynome gibt.

Sei $U\subseteq \R^n$, $V\subseteq\R^m$ offen, $f\colon U\to V$ (glatt)

* Definition: Pullback-Abbildung

Die Pullback-Abbildung zu $f$ ist

$$
  f^* \colon C^\infty(V) \to C^\infty(U) : \varphi \mapsto \varphi \circ f
$$

\begin{center}
  \begin{tikzcd}
  V \arrow[r, "\varphi"]                                      & \mathbb R \\
  U \arrow[u, "f"] \arrow[ru, "f^*(\varphi)=\varphi\circ f"'] &
  \end{tikzcd}
\end{center}

Beobachtung: $f^*$ ist Algebrenhomorphismus ($=$ ist linear und respektiert Produkte)

* Definition: Differential

Sei $U\subseteq \R^n$, $V\subseteq\R^m$ offen, $f\colon U\to V$ (glatt). Sei $p\in U$. Das Differential von $f$ an $p$ ist die Abbildung

$$
  \Diff_pf\colon
  \begin{cases}
    T_pU &\to T_{f(p)}V
    \\ \partial &\mapsto \partial \circ f^*
  \end{cases}
$$

das heißt:

$$
  [(\Diff_pf)(\partial)](\varphi) = \partial(\varphi\circ f) = \partial (f^*\varphi)
$$

Das Differential bildet Derivationen auf Derivationen ab. Zeige die Wohldefiniertheit:

\begin{center}
  \begin{tikzcd}
  C^\infty(V) \arrow[r, "f^*"] \arrow[rrd, "(\Diff_pf)(\partial)"'] & C^\infty(U) \arrow[rd, "\partial"] &           \\
                                                                &                                    & \mathbb R
  \end{tikzcd}
\end{center}

$(\Diff_pf)(\partial)$ ist linear, da Komposition linearer Abbildung.
Leibnitz Regel:

$$
  [(\Diff_pf)(\partial)](\varphi\cdot \psi)
  &=& \partial(f^*(\varphi \cdot \psi))
  \\&=& \partial((\varphi \cdot \psi)\circ f)
  \\&=& \partial((\varphi\circ f) \cdot (\psi \circ f) )
  \\&=& \partial((f^*\varphi) \cdot (f^*\psi))
  \\&=& (f^*\varphi)(p) \cdot \partial(f^*\psi) + (f^*\psi)(p) \cdot \partial(f^*\varphi)
  \\&=&\varphi(f(p))\cdot[(\Diff_pf)(\partial)](\psi) + \psi(f(p))\cdot[(\Diff_pf)(\partial)](\varphi)
$$

Vergleiche mit Definition aus Analysis:

\begin{center}
  \begin{tikzcd}
  \mathbb R^n \arrow[rrrr, "{f' = \left[\left.\frac{\partial f_i}{\partial x_j}\right|_p\right]_{i=1,\ldots,m\atop j=1,\ldots,n}}"] \arrow[d, "\cong"'] &  &  &  & \mathbb R^m                             \\
  T_p \mathbb R^n \arrow[d, "\cong"']                                                                                                                   &  &  &  & T_{f(p)}\mathbb R^m \arrow[u, "\cong"'] \\
  T_pU \arrow[rrrr, "\Diff_pf"]                                                                                                              &  &  &  & T_{f(p)}V \arrow[u, "\cong"']
  \end{tikzcd}
\end{center}

Es gilt für $\varphi\colon V\to\R$ glatt:

$$
  \R\ni\left( \left(\Diff_p f\right) \left[\left.\frac{\partial}{\partial x_j}\right|_{p}\right] \right) [\varphi]
  &=& \left.\frac{\partial}{\partial x_j}\right|_{p}(f^* \varphi)
  \\&=& \left.\frac{\partial}{\partial x_j}\right|_{p} (\varphi \circ f)
  \\&=& \left.\frac{\partial}{\partial x_j}\right|_{p} (\varphi \circ f)_1
  \\&\overset{\text{Kettenregel}}=& \begin{pmatrix} \left.\frac{\partial \varphi}{\partial y_1}\right|_{f(p)} & \hdots & \left.\frac{\partial \varphi}{\partial y_m}\right|_{f(p)}\end{pmatrix}
    \begin{pmatrix} \left.\frac{\partial f_1}{\partial x_j}\right|_{p} \\ \vdots \\ \left.\frac{\partial f_m}{\partial x_j}\right|_{p}\end{pmatrix}
  \\&=& \sum_{i=1}^m\left.\frac{\partial \varphi}{\partial y_i}\right|_{f(p)}\left.\frac{\partial f_i}{\partial x_j}\right|_p
  \\&=& \left(\sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)}\right)[\varphi]
$$

Das Diagramm wird mit den vorher konstruierten Isomophismen kommutativ.

\begin{center}
  \begin{tikzcd}
  U\subseteq \mathbb R^n \arrow[rrrrrr, "f"]                                &                                                                                                                                                       &  &   &  &                                         & V\subseteq \mathbb R^m                                                                                                                            \\
  e_j \arrow[dd, maps to] \arrow[rrrrrr, maps to]                           &                                                                                                                                                       &  &   &  &                                         & \left(\begin{matrix}\left.\frac{\partial f_i}{\partial x_1}\right|_p\\\vdots\\\left.\frac{\partial f_i}{\partial x_m}\right|_p\end{matrix}\right) \\
                                                                            & \mathbb R^n \arrow[rrrr, "{f' = \left[\left.\frac{\partial f_i}{\partial x_j}\right|_p\right]_{i=1,\ldots,m\atop j=1,\ldots,n}}"] \arrow[d, "\cong"'] &  &   &  & \mathbb R^m                             &                                                                                                                                                   \\
  {\partial_{(p,e_j)}} \arrow[d, maps to]                                   & T_p \mathbb R^n \arrow[d, "\cong"']                                                                                                                   &  & ! &  & T_{f(p)}\mathbb R^m \arrow[u, "\cong"'] & \sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)} \arrow[uu]                          \\
  {\varepsilon^*\left(\partial_{(p,e_j))}\right)} \arrow[rd, "="', no head] & T_pU \arrow[rrrr, "\Diff_pf"]                                                                                                              &  &   &  & T_{f(p)}V \arrow[u, "\cong"']           &                                                                                                                                                   \\
                                                                            & \left.\frac{\partial}{\partial x_j}\right|_p \arrow[rrrrr, maps to]                                                                            &  &   &  &                                         & \sum_{i=1}^m\left.\frac{\partial f_i}{\partial x_j}\right|_p\left.\frac{\partial}{\partial y_i}\right|_{f(p)} \arrow[uu, maps to]
  \end{tikzcd}
\end{center}

Das Differential aus der Analysis (Matrize) ist der Koordinatenausdruck von unserem Differential (Element eines Vektorraums).

$$
  \sum_{i=1}^m \underbrace{\left.\frac{\partial f_i}{\partial x_j}\right|_p}_{\text{Koordinate } \in \R} \cdot \underbrace{\left.\frac{\partial}{\partial y_i}\right|_{f(p)}}_{\text{Element aus Basis} }
$$

* Kettenregel

\begin{center}
  \begin{tikzcd}
  U \arrow[r, "f"] & V \arrow[r, "g"] & W \arrow[r, "\varphi"] & \mathbb R
  \end{tikzcd}
\end{center}

$$
  \Diff_p(g\circ f) = \Diff_{f(p)} g \circ \Diff_p f
$$

Beweis:

$$
  \left( \left( \Diff_{f(p)} g \circ \Diff_p f \right) (\partial) \right)[\varphi]
  &=& \left( \left( D_{f(p)}g \right) \left[ \left( D_pf \right) (\partial) \right] \right)[\varphi]
  \\&=&[(\Diff_p f)(\partial)] (\varphi\circ g)
  \\&=& \partial((\varphi\circ g)\circ f)
  \\&=& \partial(\varphi\circ(g\circ f))
  \\&=& \left[ \left( D_p (g\circ f) \right)(\partial) \right](\varphi)
$$

* Interpretation von Tangentialvektoren als „Geschwindigkeitsvektor“

Sei $\gamma\colon I\subseteq\R \to \R^n$ eine glatte Kurve, $I$ ein Intervall, $p=\gamma(t_0)\in \R^n$

TODO Bildchen 11

Es wäre $\Diff_{t_0} \gamma\colon T_{t_0}\R^1 \to T_{\gamma(t_0)}\R^n$. Es soll gelten $\dot\gamma(t_0)\in T_{\gamma(t_0)}\R^n$. Definiere deshalb:

$$
  \dot\gamma(t_0) := \left( D_{t_0}\gamma \right) \left( \frac{\partial}{\partial t} \right)
$$

Übung: Es gilt:

$$
  \{ \dot\gamma(t_0)\ |\ \gamma\colon I \subseteq R \text{ glatte Kurve mit } \gamma(t_0) = p \} = T_p\R^n
$$

* Satz über (inverse) implizite Funktionen

Sei $f\colon U\to V$ glatt, $U$, $V\subseteq\R^n$, $p\in U$ so dass:

$$
  D_p f\colon T_pU\to T_pV
$$

invertierbar ist. Dann ist $f$ lokal ein Diffeomorphismus:

$\exists U'\subseteq U$, $V'\subseteq V$ offen, $p\in U'$, so dass

$$
  f|_{U'} \colon U' \xrightarrow{\cong}V'
$$

ein Diffeomorphismus ist, das heißt glatte Abbildung mit glatter Inversen, d.h. $f\colon U'\to V'$ glatt, bijektiv, $f^{-1}\colon V'\to U'$ glatt