edit-this-file.tex 3.8 KB
Newer Older
Harry Fuchs's avatar
Harry Fuchs committed
1
Compiled on \today
Harry Fuchs's avatar
Harry Fuchs committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

* Erinnerungen an WS

Wir studieren Mannigfaltigkeiten (Mfg).

$\approx$ topologische Räume, die lokal wie $\mathbb R^n$ aussehen + glatte ~Strukturen~ von glatten Abbildungen zu sprechen.

Konkret: um jeden Punkt $p\in M$ gibt es eine Umgebung $U\ni p$ zusammen mit einer Karte $x\colon U\to \mathbb R^n$

%Bild 1

Idee: da $M$ lokal wie $\mathbb R^n$ aussieht, versucht man, Objekte aus der Analysis auch auf $M$ zu verstehen.

~Wichtig dabei~: das Objekt auf $M$ muss koordinatenunabhängig werden! (Physik verlangt das auch!)

1. ~Tangentialraum~ „über“ jedem Punkt $p\in M$ „hängt“ ein Vektorraum $T_pM$, $\dim T_pM = \dim M$ Elemente von $T_pM$ heißen Tangentialvektoren.
  %TODO %TYPO: remove space here
  $$
    T_pM &=& \{ \text{Ableitungen von Funktionen an } p \}
    \\&=& \{ \partial \colon C^{\infty}(M) \to \mathbb R \text{ linear} \ |\ \partial(fg) = f(p)\cdot\partial(g) + g(p)\cdot\partial(f) \}
  $$
  
  Motto: Tangentialvektor $\mathrel{\hat=}$ Richtungsableitung!
  
  %Bild 2
  
  $\pi \colon TM \to M$ ist glatt
  $v\in T_pM \mapsto p$
  
  Nutzen: wir verstehen „wirklich“, was Ableitungen sind
  
  Früher: 
  $$
    f\in C^\infty(\mathbb R^m, \mathbb R^n) &\rightsquigarrow& D_pf \in \mathbb M_{n\times m} (\mathbb R)
    \\&& Df \in C^\infty(\mathbb R^m, \mathbb M_{n\times m}(\mathbb R))
  $$
  
  Jetzt in Diffgeo:
  
  $$1
  f\in C^\infty(M, N) \underset{p\in M}\rightsquigarrow D_pf \colon T_pM \to T_{f(p)}N \text{ linear}
  $$1
  
  %Bild 3
  
2. ODEs als Flüsse von Vektorfeldern
  %Bild 4
  
  Vektorfeld: $X\colon M \to TM$ mit $\pi \circ X = id_M$ ($\Leftrightarrow X(p) \in T_pM$)
  Gegeben $X \rightsquigarrow \Phi \colon \underset{\subseteq \mathbb R \times M}W \to M$ (Fluss des Vektorfeldes)
  
  s.d. $\forall p\in M\ \gamma_p(t) := \Phi(t,p)$ die ODE
  $$1
    \dot \gamma(t) = X(\gamma(t))
  $$1
  lässt

3. Lie-Klammer von Vektorfeld und Lie-Gruppen Auf Vektorfeldern auf $M$ ergibt es eine interessante algebraische Struktur: die Lie-Klammer: gegeben $X$, $Y \in \underbrace{\Gamma(TM)}_{Vektorfeld} \rightsquigarrow [X,Y] \in \Gamma (TM)$
  
  $(\Gamma(TM), [\cdot, \cdot])$ wird zu einer Lie-Algebra.
  
  Def. Eine Lie-Algebra $(V, [\cdot, \cdot])$ ist ein Vektorraum $V$ mit einer bilinearen Abbildung $[\cdot, \cdot]: V\times V \to V$ mit folgenden Eingenschaften:
  
    1. $[X,Y] = -[Y,X]$, $\ X$, $Y \in V$
    2. Jacobi-Identität: $X$, $Y$, $Z\in V$:
    $$
      [X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0
    $$
    
  Beispiele:
    1. $\Gamma(TM)$, $[\cdot, \cdot]$ ist eine Lie-Algebra
    2. $\mathbb M_u(\mathbb R)$, $[A,B] = AB - BA$ ist eine Lie-Algebra
  
Harry Fuchs's avatar
Harry Fuchs committed
75
  Verbindung zwischen a) und b)%ref
Harry Fuchs's avatar
Harry Fuchs committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  -- Lie-Gruppen
  Lie-Gruppe $=$ Mannigfaltigkeit und Gruppe (auf kompatible Weise) Multiplikation, Inversion glatt.
  
  $G$ Lie-Gruppe $\rightsquigarrow \operatorname{Lie}(G) = 2(G) = \{ X\in \Gamma(TG) \ |\ \underbrace{(Lg)_*}_{(Lg)_{*,p} = D_pLg} X = X \} = \{ x\ |\ x \text{ linksinvariantes Vektorfeld } \}$
  
  $\rightarrow$ Lie-Algebra bzgl. $[\cdot, \cdot]$, heißt Lie-Algebra von $G$.
  
  Eigenschaften: $\operatorname{Lie}(G) \cong T_1G$ als Vektoraum
  $\Rightarrow \dim_{\mathbb R} \operatorname{Lie}(G) = \dim G$
 
  %TODO %TYPO vertical space
  $$
    Lg \colon G &\to& G\\
    h &\mapsto& g\cdot h
  $$

  Satz $G = GL(n, \mathbb R) \underset{\text{offen}}{\subset} \mathbb M_n(\mathbb R)$
  
  $\operatorname{Lie}(G) \cong T_1G \underset{\text{Vektoraum}}\cong \mathbb M_n (\mathbb R)$
  
  Dies ist auch ein Isomorphismus zwischen Lie-Algebren!
  
  $$1
    (\operatorname{Lie}(\operatorname{GL(n, \mathbb R)}), [\cdot, \cdot]) \cong (\mathbb M_n(\mathbb R), [\cdot, \cdot])
  $$1
  
  Für jedes $G< \operatorname{GL}(n, \mathbb R)$ ist dann $\operatorname{Lie}(G) \subseteq (\mathbb M_n(\mathbb R), [\cdot, \cdot])$.
  $$1
    [A,B] = AB - BA
  $$1
Harry Fuchs's avatar
Harry Fuchs committed
106
107

%DATE 2019-04-02