Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
diffgeo-skript
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Alekseev, Vadim
diffgeo-skript
Commits
dbe8d9d8
Commit
dbe8d9d8
authored
Jan 06, 2020
by
Harry Fuchs
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
2019-11-29
parent
06175c42
Pipeline
#3204
passed with stage
in 12 minutes and 31 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
160 additions
and
1 deletion
+160
-1
diffgeoIII/edit-this-file.tex
diffgeoIII/edit-this-file.tex
+160
-1
No files found.
diffgeoIII/edit-this-file.tex
View file @
dbe8d9d8
...
...
@@ -2071,7 +2071,166 @@ $$
\Rightarrow
\widehat
{
[
X,Y
]
}
(
1
)
=
AB
-
BA
=
[
A,B
]
_{
[
\mathbb
M
_
n
(
K
)]
}
$$
TODO 2019-11-29
%2019-11-29
** Beispiel
1.
$
\operatorname
{
Lie
}
(
\operatorname
{
GL
}
(
n,
\mathbb
K
))=
:
\mathfrak
g Y
(
n,
\mathbb
K
)
\cong
(
\mathbb
M
_
n
(
\mathbb
K
)
,
[
\cdot
,
\cdot
])
$
(folgt aus Proposition)
2.
$
\mathfrak
s Y
(
n,
\mathbb
K
)
:
=
\operatorname
{
Lie
}
(
\operatorname
{
SL
}
(
n,
\mathbb
K
))
$
Brauchen
$
T
_
1
\operatorname
{
SL
}
(
n,
\mathbb
K
)
\subseteq
\mathbb
M
_
n
(
\mathbb
K
)
$
auszwechneu
%TODO content nicht leserlich
$$
\operatorname
{
SL
}
(
n,
\mathbb
K
)
=
\{
A
\in
\operatorname
{
GL
}
(
n,
\mathbb
K
)
\
|
\ \det
A
=
1
\}
=
{
\det
}^{
-
1
}
(
1
)
$$
$
1
$
ist regulärer Wert von
$
\det
$
.
Übung 8:
$$
T
_
1
\operatorname
{
SL
}
(
n,
\mathbb
K
)
\cong
\operatorname
{
Ker
}
D
_
1
\det
=
\operatorname
{
ker
}
(
T
_
r :
\mathbb
M
_
n
(
\mathbb
K
)
\to
\mathbb
K
)
$$
$$
\Rightarrow
\mathfrak
sY
(
n,
\mathbb
K
)
=
\{
A
=
\mathbb
M
_
n
(
\mathbb
K
)
\
|
\
T
_
r
(
A
)
=
0
\}
\\
([
\mathfrak
sY,
\mathfrak
sY
]
\subseteq
\mathfrak
sY,
\text
{
da
}
T
_
r
([
A,B
])=
0
)
$$
3.
$$
\mathfrak
o
(
n,
\mathbb
K
)
\cong
T
_
1
O
(
n
\mathbb
K
)
=
\{
\dot
\gamma
(
0
)
\
|
\ \gamma\colon
I
\to
O
(
n,
\mathbb
K
)
,
\gamma
(
0
)
\underset
{
(*)
}
=
\eins
\}
$$
Sei
$
\gamma\colon
I
\to
O
(
n,
\mathbb
K
)
\Rightarrow
\gamma
(
t
)
^
T
\gamma
(
t
)
=
1
$
.
$$
\Rightarrow
0
=
\left
.
\frac
{
\partial
}{
\partial
t
}
\right
|
_{
t
=
0
}
(
\gamma
(
t
)
^
T
\gamma
(
t
))
=
\dot\gamma
(
0
)
^
T
\cdot\gamma
(
0
)+
\gamma
(
0
)
^
T
\cdot
\dot\gamma
(
0
)
\overset
{
(*)
}
=
\dot\gamma
(
0
)
^
T
+
\gamma
(
0
)
$$
das heißt:
$$
T
_
1
O
(
n,
\mathbb
K
)
$$
mit
$
A
+
A
^
T
=
0
$
folgt:
$$
\gamma
_
A
(
t
)
:
=
\exp
(
tA
)
\in
O
(
n,
\mathbb
K
)
$$
da
$$
\exp
(
tA
)
^
T
\cdot
\exp
(
tA
)
=
\exp
(
tA
^
T
)
\cdot
\exp
(
tA
)
\\
&
\overset
?
=
&
\exp
(-
tA
)
\cdot
\exp
(
tA
)
\\
&
=
&
\exp
(
0
)
\\
&
=
&
1
$$
%TODO content What is questionmark for?
$$
\dot
\gamma
_
A
(
0
)
=
A,
\quad
\gamma
_
A
(
0
)
=
\eins
$$
(oder nutze Satz vom regulären Wert)
4.
$$
\mathfrak
{
so
}
(
3
)
:
=
\mathfrak
{
so
}
(
3
,
\R
)
\cong
T
_
1
\operatorname
{
SO
}
(
3
)
\cong
T
_
1
O
(
3
)
$$
da
$$
O
(
3
)
=
\operatorname
{
SO
}
(
3
)
\dot\cup
(-
\operatorname
{
SO
}
(
3
))
$$
zwei Zusammenhangskomponenten.
$$
T
_
1
O
(
3
)
&
=
&
\{
A
\in
\mathbb
M
_
3
(
\R
)
: A
^
T
=-
A
\}
\\
&
=
&
\left\langle
\underbrace
{
\left
(
\begin
{
matrix
}
0
&
1
&
0
\\
-
1
&
0
&
0
\\
0
&
0
&
0
\end
{
matrix
}
\right
)
}_{
=
: L
_
x
}
,
\underbrace
{
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
0
&
0
&
0
\\
-
1
&
0
&
0
\end
{
matrix
}
\right
)
}_{
=
:L
_
y
}
,
\underbrace
{
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
0
&
0
&
1
\\
0
&
-
1
&
0
\end
{
matrix
}
\right
)
}_{
=
:L
_
z
}
\right\rangle
\\
&
=
&
\left\langle
L
_
x, L
_
y, L
_
z
\right\rangle
$$
$$
\exp
(
t
\cdot
L
_
z
)
=
\left
(
\begin
{
matrix
}
\cos
t
&
\sin
t
&
0
\\
-
\sin
t
&
\cos
t
&
0
\\
0
&
0
&
1
\end
{
matrix
}
\right
)
$$
Nebenrechnung du vorherigem:
$$
\left
(
\begin
{
matrix
}
0
&
1
\\
-
1
&
0
\end
{
matrix
}
\right
)
^
2
&
=
&
\left
(
\begin
{
matrix
}
-
1
&
0
\\
0
&
-
1
\end
{
matrix
}
\right
)
\\
\sum
_{
k
=
0
}^
\infty
\frac
{
t
^
k
}{
k
!
}
\left
(
\begin
{
matrix
}
0
&
1
\\
-
1
&
0
\end
{
matrix
}
\right
)
^
k
&
=
&
\sum
_{
l
=
0
}^
\infty
(-
1
)
^
l
\frac
{
t
^{
2
l
}}{
(
2
l
)!
}
\left
(
\begin
{
matrix
}
1
&
0
\\
0
&
1
\end
{
matrix
}
\right
)
+
\sum
_{
l
=
0
}^
\infty
(-
1
)
^
l
\frac
{
t
^{
2
l
+
1
}}{
(
2
l
+
1
)!
}
\left
(
\begin
{
matrix
}
0
&
1
\\
-
1
&
0
\end
{
matrix
}
\right
)
\\
&
=
&
\left
(
\begin
{
matrix
}
\cos
t
&
\sin
t
\\
-
\sin
t
&
\cos
t
\end
{
matrix
}
\right
)
$$
$$
\left
[
L
_
x, L
_
y
\right
]
&
=
&
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
-
1
&
0
&
0
\\
0
&
0
&
0
\end
{
matrix
}
\right
)
-
\left
(
\begin
{
matrix
}
0
&
-
1
&
0
\\
0
&
0
&
0
\\
0
&
0
&
0
\end
{
matrix
}
\right
)
=
L
_
z
\\
\left
[
L
_
y, L
_
z
\right
]
&
=
&
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
0
&
0
&
0
\\
0
&
-
1
&
0
\end
{
matrix
}
\right
)
-
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
0
&
0
&
-
1
\\
0
&
0
&
0
\end
{
matrix
}
\right
)
=
L
_
x
\\
\left
[
L
_
z, L
_
x
\right
]
&
=
&
\left
(
\begin
{
matrix
}
0
&
0
&
1
\\
0
&
0
&
0
\\
0
&
0
&
0
\end
{
matrix
}
\right
)
-
\left
(
\begin
{
matrix
}
0
&
0
&
0
\\
0
&
0
&
0
\\
1
&
0
&
0
\end
{
matrix
}
\right
)
=
L
_
y
$$
„infinitisimale Rotation“
5.
$
\mathfrak
{
su
}
(
2
)
=
T
_
1
\operatorname
{
SU
}
(
2
)
$
$$
\operatorname
{
SU
}
(
2
)
&
=
&
\{
A
\in
\mathbb
M
_
2
(
\mathbb
C
)
\
|
\
A
^
*
A
=
\eins
,
\det
A
=
1
\}
\\
&
=
&
\{
X
\in
\mathbb
M
_
2
(
\mathbb
C
)
\
|
\
X
^
2
=
-
X, T
_
r
(
X
)
=
0
\}
\\
&
\cong
&
\left\langle
\underbrace
{
\left
(
\begin
{
matrix
}
i
&
0
\\
0
&
-
i
\end
{
matrix
}
\right
)
}_{
=
:x
_
3
}
,
\underbrace
{
\left
(
\begin
{
matrix
}
0
&
-
1
\\
+
1
&
0
\end
{
matrix
}
\right
)
}_{
=
:x
_
2
}
,
\underbrace
{
\left
(
\begin
{
matrix
}
-
i
&
0
\\
0
&
+
i
\end
{
matrix
}
\right
)
}_{
=
:x
_
1
}
\right\rangle
\\
&
=
&
\left\langle
x
_
3
, x
_
2
, x
_
1
\right\rangle
$$
$$
\left
[
x
_
1
, x
_
2
\right
]
&
=
&
\left
(
\begin
{
matrix
}
+
i
&
0
\\
0
&
-
i
\end
{
matrix
}
\right
)
-
\left
(
\begin
{
matrix
}
-
i
&
0
\\
0
&
+
i
\end
{
matrix
}
\right
)
=
2
x
_
3
\\\left
[
x
_
2
, x
_
3
\right
]
&
\overset
{
\text
{
analog
}}
=
&
2
x
_
1
\\\left
[
x
_
2
, x
_
3
\right
]
&
\overset
{
\text
{
analog zur analogen Herangehensweise
}
\atop
\text
{
vom vorherigen $
=
$
}}
=
&
2
x
_
2
$$
$$
\exp
(
t x
_
3
)
&
=
&
\left
(
\begin
{
matrix
}
e
^{
it
}&
0
\\
0
&
e
^{
-
it
}
\end
{
matrix
}
\right
)
=
: g
_
k
\in
\operatorname
{
SU
}
(
2
)
\\
&
=
&
g
_
t x
_
3
g
_
t
^{
-
1
}
=
x
_
3
\\
&
=
&
g
_
t x
_
1
g
_
t
^{
-
1
}
=
\left
(
\begin
{
matrix
}
e
^{
it
}&
0
\\
0
&
e
^{
-
it
}
\end
{
matrix
}
\right
)
\left
(
\begin
{
matrix
}
0
&
i
\\
i
&
0
\end
{
matrix
}
\right
)
\left
(
\begin
{
matrix
}
e
^{
it
}&
0
\\
0
&
e
^{
-
it
}
\end
{
matrix
}
\right
)
\\
&
=
&
\left
(
\begin
{
matrix
}
0
&
ie
^{
it
}
\\
ie
^{
-
it
}&
0
\end
{
matrix
}
\right
)
\left
(
\begin
{
matrix
}
e
^{
-
it
}&
0
\\
0
&
e
^{
it
}
\end
{
matrix
}
\right
)
\\
&
=
&
\left
(
\begin
{
matrix
}
0
&
ie
^{
2
it
}
\\
ie
^{
-
2
it
}&
0
\end
{
matrix
}
\right
)
\\
&
=
&
\cos
(
2
t
)
\cdot
x
_
1
+
\sin
(
2
t
)
\cdot
x
_
2
$$
Analog:
$$
g
_
tx
_
2
g
_
t
^{
-
1
}
=
\cos
(
2
t
)
x
_
2
-
\sin
(
2
t
)
x
_
1
$$
$$
\Rightarrow
\underbrace
{
M
_{
x
_
1
, x
_
2
, x
_
3
}}_{
\text
{
darstellende Matrix
}}
(
g
_
t
(
\cdot
)
g
_{
t
^{
-
1
}}
)
&
=
&
\left
(
\begin
{
matrix
}
\cos
(
2
t
)
&
-
\sin
{
2
t
}
&
0
\\
\sin
(
2
t
)
&
\cos
(
2
t
)
&
0
\\
0
&
0
&
1
\end
{
matrix
}
\right
)
$$
$
X
$
,
$
Y
\in
\mathfrak
{
SU
}
(
2
)
$
$$
\langle
X, Y
\rangle
:
=
\frac
12
\operatorname
{
Tr
}
(
X
\cdot
Y
^
*)
=
-
\frac
12
\operatorname
{
Tr
}
(
X
\cdot
Y
)
$$
ist Skalarprodukt, da
$
\operatorname
{
Tr
}
(
\underbrace
{
XX
^
*
}_{
\text
{
positiv semidefinit
}}
)
\geqslant
0
$
.
$
x
_
1
$
,
$
x
_
2
$
,
$
x
_
3
$
ist Orthogonolabasis (ONB)
$
\Rightarrow
(
\mathfrak
su
(
2
)
,
\langle
\cdot
,
\cdot
\rangle
)
\cong
(
\R
^
3
,
\langle
\cdot
,
\cdot
\rangle
)
$
Sei
$
g
\in
\operatorname
{
SU
}
(
2
)
$
$$
\rightarrow
\operatorname
{
Ad
}
(
g
)
\colon
\begin
{
cases
}
\mathfrak
{
su
}
(
2
)
&
\to
\mathfrak
{
su
}
(
2
)
\\
X
&
\mapsto
gXg
^{
-
1
}
\end
{
cases
}
$$
$$
\left\langle
\operatorname
{
Ad
}
(
g
)
X,
\operatorname
{
Ad
}
(
g
)
Y
\right\rangle
&
=
&
\frac
12
\operatorname
{
Tr
}
(
gXg
^{
-
1
}
\cdot
(
gYg
^{
-
1
}
)
^
*)
\\
&
=
&
\frac
12
\operatorname
{
Tr
}
(
gX
\underbrace
{
g
^{
-
1
}
(
g
^{
-
1
}
)
^
*
}_{
=
\eins\text
{
, da
}
g
\in
\operatorname
{
SU
}
(
2
)
}
Y
^
*
g
^
*)
\\
&
=
&
\frac
12
\operatorname
{
Tr
}
(
gXY
^
*
g
^
*)
\\
&
=
&
\frac
12
\operatorname
{
Tr
}
(
XY
^
*)
$$
Übung:
$$
\det
\operatorname
{
Ad
}
(
g
)
=
1
$$
$
\operatorname
{
Ad
}
\colon
\operatorname
{
SU
}
(
2
)
\to
\operatorname
{
SO
}
(
3
)
$
ist Gruppenhomomorphismus
$$
\operatorname
{
Ker
}
\operatorname
{
Ad
}
&
=
&
\{
g
\in
\operatorname
{
SU
}
(
2
)
\
|
\
gXg
^{
-
1
}
=
X
\}
,
\quad
\forall
X
\in
\mathfrak
{
su
}
(
2
)
\\
&
=
&
\left\{
\left
(
\begin
{
matrix
}
\alpha
&
0
\\
0
&
\alpha\end
{
matrix
}
\right
)
\in
\operatorname
{
SU
}
(
2
)
\right\}
\\
&
=
&
\{\pm
1
\}
$$
$
\operatorname
{
Ad
}$
ist surjektiv: Alle Rotationen um
$
x
$
-,
$
y
$
-,
$
z
$
-Achse sind im Bild:
$$
\rightarrow
\text
{
erzeugen
}
\operatorname
{
SO
}
(
3
)
$$
TODO 2019-12-05
TODO 2019-12-12
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment