Commit 294df099 authored by Müller, Felix's avatar Müller, Felix

Fix broken links

parent 77862e92
......@@ -3,7 +3,7 @@
The class [`DOFVector`](#class-dofvector) acts as a container for storing the coefficients of the solution discrete function.
It is attached to a global basis to give its coefficients a meaning. A [`DiscreteFunction`](#class-discretefunction) goes
one step further and transforms a DOFVector or subspaces of a DOFVector (with respecto to a sub basis)
into a [`GridFunction`](/reference/GridFunctions) that allows to use it like a function defined on a grid.
into a [`GridFunction`](../GridFunctions) that allows to use it like a function defined on a grid.
Let $`\{\phi_i\}`$ be the set of basis functions of a finite-element space $`V`$. A function $`u\in V`$ can be represented
as
......@@ -68,21 +68,21 @@ The `value_type` is often the same as `T`, but might be just something similar,
[`interpolate_noalias`](#function-dofvectorinterpolate) | Interpolation of GridFunction to DOFVector assuming no aliasing
[`operator<<`](#function-dofvectorinterpolate) | Operator for the interpolation
??? seealso "Functions inherited from [`VectorFacade`](/reference/MatVecBase/#class-vectorfacade)"
??? seealso "Functions inherited from [`VectorFacade`](../MatVecBase/#class-vectorfacade)"
Function | Descriptions
--------------------------------|---------------------------------------------
[`basis`](/reference/MatVecBase#function-vectorbasebasis) | Return the GlobalBasis associated with the vector
[`backend`](/reference/MatVecBase#function-vectorbasebackend) | Return the backend vector wrapper implementing the actual algebra
[`localSize,globalSize`](/reference/MatVecBase#function-vectorbasesize) | The number of entries in the local part of the vector
[`resize,resizeZero`](/reference/MatVecBase#function-vectorbaseglobalSize)| Resize the vector to the size of the basis
[`init`](/reference/MatVecBase#function-vectorbaseglobalSize) | Prepare the vector for insertion of values
[`finish`](/reference/MatVecBase#function-vectorbaseglobalSize) | Finish the insertion of values
[`at`](/reference/MatVecBase#function-vectorbaseat) | Return the value of the vector at the given local index
[`insert,set,add`](/reference/MatVecBase#function-vectorbaseinsert) | Insert a single value into the matrix
[`gather`](/reference/MatVecBase#function-vectorbasegather) | Extract values from the vector referring to the given local indices
[`scatter`](/reference/MatVecBase#function-vectorbasescatter) | Insert a block of values into the vector
[`copy`](/reference/MatVecBase#function-vectorbasescatter) | Copies a block of values into the vector
[`forEach`](/reference/MatVecBase#function-vectorbasescatter) | Apply a functor to each value at given indices
[`basis`](../MatVecBase#function-vectorbasebasis) | Return the GlobalBasis associated with the vector
[`backend`](../MatVecBase#function-vectorbasebackend) | Return the backend vector wrapper implementing the actual algebra
[`localSize,globalSize`](../MatVecBase#function-vectorbasesize) | The number of entries in the local part of the vector
[`resize,resizeZero`](../MatVecBase#function-vectorbaseglobalSize)| Resize the vector to the size of the basis
[`init`](../MatVecBase#function-vectorbaseglobalSize) | Prepare the vector for insertion of values
[`finish`](../MatVecBase#function-vectorbaseglobalSize) | Finish the insertion of values
[`at`](../MatVecBase#function-vectorbaseat) | Return the value of the vector at the given local index
[`insert,set,add`](../MatVecBase#function-vectorbaseinsert) | Insert a single value into the matrix
[`gather`](../MatVecBase#function-vectorbasegather) | Extract values from the vector referring to the given local indices
[`scatter`](../MatVecBase#function-vectorbasescatter) | Insert a block of values into the vector
[`copy`](../MatVecBase#function-vectorbasescatter) | Copies a block of values into the vector
[`forEach`](../MatVecBase#function-vectorbasescatter) | Apply a functor to each value at given indices
## function `DOFVector::DOFVector`
......
......@@ -35,7 +35,7 @@ elementary terms.
### Examples of expressions
Before we give examples where and how to use GridFunctions, we demonstrate what an
`Expression` could be, to create a GridFunction from. In the following examples,
we assume that a [ProblemStat](reference/Problem#class-problemstat) named `prob` is already
we assume that a [ProblemStat](../Problem#class-problemstat) named `prob` is already
created and initialized.
#### 1. Discrete Functions
......@@ -95,7 +95,7 @@ prob.addMatrixOperator(opB, Row, Col);
auto opL = makeOperator(LinearForm, Expression);
prob.addVectorOperator(opL, Row);
```
See also [makeOperator()](reference/Operators#function-makeoperator).
See also [makeOperator()](../Operators#function-makeoperator).
#### 2. Usage of GridFunctions in BoundaryConditions:
```c++
......
......@@ -19,9 +19,9 @@ auto makeOperator(Tag tag, Expr&& expr, QuadratureArgs&&... args)
```
Constructs a `GridFunctionOperator` that can be passed to a
[`ProblemStat`](reference/Problem#class-problemstat) in the member functions
[`addMatrixOperator()`](reference/Problem#function-problemstataddmatrixoperator)
or [`addVectorOperator()`](reference/Problem#function-problemstataddvectoroperator).
[`ProblemStat`](../Problem#class-problemstat) in the member functions
[`addMatrixOperator()`](../Problem#function-problemstataddmatrixoperator)
or [`addVectorOperator()`](../Problem#function-problemstataddvectoroperator).
The `tag` therby identifies which type of operator to create, the `expr` is used
as a coefficient function in the operator and the optional quadrature arguments
are used to determine a quadrature rule for the integration of the operator on an
......@@ -35,14 +35,14 @@ element.
zero-order terms, first-order terms, and second-order terms. See the examples below.
`Expr expr`
: An `Expression` is anything, a [`GridFunction`](reference/GridFunctions) can
: An `Expression` is anything, a [`GridFunction`](../GridFunctions) can
be created from, sometimes also called PreGridFunction. It includes constants,
functors callable with GlobalCoordinates, and any combination of GridFunctions.
`QuadratureArgs args...`
: Arguments that are passed to a quadrature creator. Anything that needs
a quadrature formula needs to determine the (approximative) polynomial degree
of the GridFunctions. If the [`GridFunction`](reference/GridFunctions) builds a
of the GridFunctions. If the [`GridFunction`](../GridFunctions) builds a
polynomial expression, it can be deduced automatically, i.e. if it includes constants,
DOFVectors, and arithmetic operator `operator+`, `operator-`, or `operator*`. If
the polynomial order can not be deduced, the compiler gives an error. Then, this
......@@ -112,7 +112,7 @@ special basis, like a taylor-hood basis.
### Examples
#### Tags and expressions
The general procedure to describe a PDE is to decompose it into individual terms and add
all of them to a [`ProblemStat`](reference/Problem#class-problemstat):
all of them to a [`ProblemStat`](../Problem#class-problemstat):
```c++
using Grid = /* any dune grid type */;
using Traits = TaylorHoodBasis<Grid>;
......@@ -245,4 +245,4 @@ prob.addMatrixOperator(op, 0, 0);
prob.addVectorOperator(op, 0);
```
See also an example of usage in the examples folder `examples/convection_diffusion.cc`
\ No newline at end of file
See also an example of usage in the examples folder `examples/convection_diffusion.cc`
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment