Commit a2b0f4b5 authored by Praetorius, Simon's avatar Praetorius, Simon

Merge branch 'feature/update_doc' into 'master'

Feature/update doc

See merge request !216
parents ba55e182 00898fc5
Pipeline #4954 passed with stage
in 64 minutes and 2 seconds
......@@ -18,7 +18,6 @@ namespace AMDiS
* to a row and column global basis.
*
* \tparam T The coefficient type of the matrix
* \tparam Pattern The type of the sparsity pattern
* \tparam MatrixImpl A linear-algebra backend for the matrix storage
**/
template <class T, template <class> class MatrixImpl>
......
......@@ -3,7 +3,7 @@
The class [`DOFVector`](#class-dofvector) acts as a container for storing the coefficients of the solution discrete function.
It is attached to a global basis to give its coefficients a meaning. A [`DiscreteFunction`](#class-discretefunction) goes
one step further and transforms a DOFVector or subspaces of a DOFVector (with respecto to a sub basis)
into a [`GridFunction`](/reference/GridFunctions) that allows to use it like a function defined on a grid.
into a [`GridFunction`](../GridFunctions) that allows to use it like a function defined on a grid.
Let $`\{\phi_i\}`$ be the set of basis functions of a finite-element space $`V`$. A function $`u\in V`$ can be represented
as
......@@ -23,12 +23,12 @@ The pair $`\{(u_i),\{\phi_i\}\}`$ is called `DOFVector` and the function $`u=u(\
## class `DOFVector`
Defined in header [`<amdis/DOFVector.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/DOFVector.hpp)
Defined in header [`<amdis/DOFVector.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/DOFVector.hpp)
```c++
template <class GB,
class T = double,
class Traits = BackendTraits<GB,T>>
class Traits = BackendTraits<GB>>
class DOFVector
: public VectorFacade<T, Traits::template VectorImpl>
```
......@@ -68,37 +68,41 @@ The `value_type` is often the same as `T`, but might be just something similar,
[`interpolate_noalias`](#function-dofvectorinterpolate) | Interpolation of GridFunction to DOFVector assuming no aliasing
[`operator<<`](#function-dofvectorinterpolate) | Operator for the interpolation
??? seealso "Functions inherited from [`VectorFacade`](/reference/MatVecBase/#class-vectorfacade)"
??? seealso "Functions inherited from [`VectorFacade`](../MatVecFacade/#class-vectorfacade)"
Function | Descriptions
--------------------------------|---------------------------------------------
[`basis`](/reference/MatVecBase#function-vectorbasebasis) | Return the GlobalBasis associated with the vector
[`backend`](/reference/MatVecBase#function-vectorbasebackend) | Return the backend vector wrapper implementing the actual algebra
[`localSize,globalSize`](/reference/MatVecBase#function-vectorbasesize) | The number of entries in the local part of the vector
[`resize,resizeZero`](/reference/MatVecBase#function-vectorbaseglobalSize)| Resize the vector to the size of the basis
[`init`](/reference/MatVecBase#function-vectorbaseglobalSize) | Prepare the vector for insertion of values
[`finish`](/reference/MatVecBase#function-vectorbaseglobalSize) | Finish the insertion of values
[`at`](/reference/MatVecBase#function-vectorbaseat) | Return the value of the vector at the given local index
[`insert,set,add`](/reference/MatVecBase#function-vectorbaseinsert) | Insert a single value into the matrix
[`gather`](/reference/MatVecBase#function-vectorbasegather) | Extract values from the vector referring to the given local indices
[`scatter`](/reference/MatVecBase#function-vectorbasescatter) | Insert a block of values into the vector
[`copy`](/reference/MatVecBase#function-vectorbasescatter) | Copies a block of values into the vector
[`forEach`](/reference/MatVecBase#function-vectorbasescatter) | Apply a functor to each value at given indices
[`impl`](../MatVecFacade#function-vectorbasebackend) | Return the backend vector wrapper implementing the actual algebra
[`localSize,globalSize`](../MatVecFacade#function-vectorbasesize) | The number of entries in the local part of the vector
[`resize,resizeZero`](../MatVecFacade#function-vectorbaseglobalSize)| Resize the vector to the size of the basis
[`init`](../MatVecFacade#function-vectorbaseglobalSize) | Prepare the vector for insertion of values
[`finish`](../MatVecFacade#function-vectorbaseglobalSize) | Finish the insertion of values
[`at`](../MatVecFacade#function-vectorbaseat) | Return the value of the vector at the given local index
[`insert,set,add`](../MatVecFacade#function-vectorbaseinsert) | Insert a single value into the matrix
[`gather`](../MatVecFacade#function-vectorbasegather) | Extract values from the vector referring to the given local indices
[`scatter`](../MatVecFacade#function-vectorbasescatter) | Insert a block of values into the vector
[`forEach`](../MatVecFacade#function-vectorbasescatter) | Apply a functor to each value at given indices
## function `DOFVector::DOFVector`
```c++
template <class Basis>
DOFVector(Basis&& basis, DataTransferOperation op = INTERPOLATE)
template <class GV, class PBF>
DOFVector(GV const& gridView, PBF const& preBasisFactory, DataTransferOperation op = INTERPOLATE)
```
Constructs the DOFVector from a given global basis and optionally a DataTransferOperation that
defines how the DOFVector is handled during grid adaption.
Constructs the DOFVector from a given global basis or a grid view and a basis factory, and optionally a DataTransferOperation that defines how the DOFVector is handled during grid adaption.
#### Arguments
`Basis basis`
: Either a `shared_ptr` to the `GlobalBasis` type or anything that can be converted to that, e.g. a
reference or a `unique_ptr` or a dune-functions `DefaultGlobalBasis`. References to lavlues are
wrapped into non-destroying `shared_ptr`s whereas rvalue-references are moved into new basis objects.
: Either a `shared_ptr` to the `GlobalBasis` type or anything that can be converted to that, e.g. a reference or a `unique_ptr`. References to lvalues are wrapped into non-destroying `shared_ptr`s whereas rvalue-references are moved into new basis objects.
`GV gridView`
: A grid view provided by the grid
`PBF preBasisFactory`
: A factory to create a pre-basis, see [the ref page on GlobalBasis](../GlobalBasis#making-a-prebasis)
`DataTransferOperation op`
: The operation performed during data-transfer, either `DataTransferOperation::INTERPOLATE` or `DataTransferOperation::NO_OPERATION`
......@@ -214,7 +218,7 @@ performed on the temporary using *noalias* interpolation (1). Then, this tempoar
## function `makeDOFVector`
Defined in header [`<amdis/DOFVector.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/DOFVector.hpp)
Defined in header [`<amdis/DOFVector.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/DOFVector.hpp)
```c++
template <class T = double,
......@@ -261,7 +265,7 @@ auto vec2 = makeDOFVector(basis2, DataTransferOperation::NO_OPERATION);
## class `DiscreteFunction`
Defined in header [`<amdis/gridfunctions/DiscreteFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/DiscreteFunction.hpp)
Defined in header [`<amdis/gridfunctions/DiscreteFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/DiscreteFunction.hpp)
```c++
template <class Coefficients,
......@@ -316,10 +320,10 @@ A `DiscreteFunction` is the interpretation of a `DOFVector` as grid function.
## function `DiscreteFunction::DiscreteFunction`
```c++
// (1)
DiscreteFunction(DOFVector<GlobalBasis,T> const& dofVector,
DiscreteFunction(DOFVector<GlobalBasis,T> const& dofVector, GlobalBasis const& basis,
TreePath const& treePath = {})
// (2)
DiscreteFunction(DOFVector<GlobalBasis,T>& dofVector,
DiscreteFunction(DOFVector<GlobalBasis,T>& dofVector, GlobalBasis const& basis,
TreePath const& treePath = {})
```
......@@ -331,6 +335,9 @@ only available for the const or mutable `is_const` template parameter specializa
: The container storing the global coefficients. Is stored as pointer in the DiscreteFunction and thus must have a longer lifetime
than the DiscreteFunction.
`GlobalBasis const& basis`
: The global basis associated with the dofvector.
`TreePath treePath`
: A `Dune::TypeTree::HybridTreePath<...>` representing the coordinates of a node in the basis tree this DiscreteFunction is
defined on. The type of the treePath also defines the `Range` type of the DiscreteFunction.
......@@ -421,7 +428,7 @@ DiscreteFunction& operator+=(Expr&& expr)
// (5)
template <class Expr>
DiscreteFunction& operator+=(Expr&& expr)
DiscreteFunction& operator-=(Expr&& expr)
```
(1) Interpolation of a `GridFunction` (or Expression) to the subtree of the DOFVector, assuming that there is no
......@@ -467,18 +474,20 @@ df2 += 42.0;
## function `makeDiscreteFunction`
Defined in header [`<amdis/gridfunctions/DiscreteFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/DiscreteFunction.hpp)
Defined in header [`<amdis/gridfunctions/DiscreteFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/DiscreteFunction.hpp)
```c++
// (1)
template <class GlobalBasis, class ValueType,
class PreTreePath = Dune::TypeTree::HybridTreePath<>>
auto makeDiscreteFunction(DOFVector<GlobalBasis, ValueType> const& dofVector,
GlobalBasis const& basis,
PreTreePath const& preTreePath = {})
// (2)
template <class GlobalBasis, class ValueType,
class PreTreePath = Dune::TypeTree::HybridTreePath<>>
auto makeDiscreteFunction(DOFVector<GlobalBasis, ValueType>& dofVector,
GlobalBasis const& basis,
PreTreePath const& preTreePath = {})
```
......@@ -491,6 +500,9 @@ can be constructed from.
: The container storing the global coefficients. Is stored as pointer in the DiscreteFunction and thus must have a longer lifetime
than the DiscreteFunction.
`GlobalBasis const& basis`
: The global basis associated to dofVector.
`PreTreePath preTreePath`
: A pree-tree path, a `Dune::TypeTree::HybridTreePath<...>` can be created from.
......
# Global Basis {: #group-globalbasis }
## Summary
In the context of the finite-element method we use a finite-element space $`V`$ with the set of basis functions $`\{\phi_i\}`$. Within AMDiS this concept is realized by the class `ParallelGlobalBasis`, contained in the header file `amdis/functions/ParallelGlobalBasis.hpp`. This extends the interface of the underlying `Dune::Functions::DefaultGlobalBasis<Impl>` with an automatic update mechanism used in several places within AMDiS. We strongly advice to always use an `AMDiS::ParallelGlobalBasis` or a user-defined derived class instead of the DUNE data structure for the update mechanism to work properly.
For more information on the class interface visit the API documentation.
## PreBasis classes and basis trees
Many finite-element spaces in applications can be constructed as a product of simple spaces $`V = V_1 \times V_2 \times \dots \times V_k`$. For example the Taylor-Hood-Element can be constructed as $`V_{TH} = V_{v} \times V_{p}`$ with the space of velocity functions $`V_v`$ and pressure functions $`V_p`$. The velocity space can again be decomposed into the vector components $`V_v = V_{v_1} \times \dots \times V_{v_n}`$. If we use second-degree lagrange basis functions for the velocity space and first-order lagrange basis functions for the pressure we get a decomposition $`V_{TH} = V_{v_1} \times V_{v_n} \times V_p = L_2^n \times L_1`$.
The underlying numerics environment of AMDiS, DUNE, attempts to model the situation above. Hence a `ParallelGlobalBasis` in AMDiS can be defined by a tree structure using the Dune-PreBasis class, which itself is composed of nodes in a tree. The leaf nodes in this tree contain the implementation details of the simple basis, while inner nodes indicate composition of either identical children (called power nodes) or arbitrary children (called composite nodes).
### Making a PreBasis
When we want to build a `PreBasis` we must first identify the structure of the basis we want to construct with a tree. We can then build that structure in AMDiS by nesting the functions `Dune::Functions::BasisFactory::composite(Nodes...[, MergingStrategy])` for composite nodes, `Dune::Functions::BasisFactory::power(Node[, MergingStrategy])` for power nodes and implementations (e.g. `Dune::Functions::BasisFactory::lagrange<k>())`). The second optional argument `MergingStrategy` provides merging strategies to the inner nodes, specifying how the indices of the simple leaf basis should be merged to obtain the indexing of the global basis. Currently only flat indexing is supported by AMDiS.
The following code snippet shows how a PreBasisFactory for a Taylor-Hood-Element is constructed, that can later be used to build a global basis.
```c++
using namespace Dune::Functions::BasisFactory;
const int dow = 2; // world dimension
const int k = 1; // order parameter
auto taylorHoodPreBasisFactory =
composite(
power<dow>(
lagrange<k+1>()
),
lagrange<k>()
);
auto taylorHoodPreBasisFactoryWithMergingStrategy =
composite(
power<dow>(
lagrange<k+1>(),
flatInterleaved()
),
lagrange<k>(),
flatLexicographic()
);
```
## Making a global basis
Using a PreBasisFactory we can easily make a global basis by defining the set of grid elements on which the basis functions of the FE-space should live. This can be done by providing a GridView and using the `ParallelGlobalBasis` constructors. An optional name can be provided that can be used to pass initfile parameters to the parallel communication class.
```c++
// Name, Grid and Dune::DefaultGlobalBasis arguments
template <class... Args>
ParallelGlobalBasis(std::string const& name, Grid const& grid, Args&&... args);
// As above with name defaulting to ""
template <class... Args>
ParallelGlobalBasis(Grid const& grid, Args&&... args);
// Name, GridView and PreBasisFactory
template <class PBF>
ParallelGlobalBasis(std::string const& name, GridView const& gridView, PBF const& preBasisFactory);
// As above with name defaulting to ""
template <class PBF>
ParallelGlobalBasis(GridView const& gridView, PBF const& preBasisFactory);
```
If we use a ProblemStat object most of the work will be done automatically for us. The PreBasis is specified via a Traits template parameter with the most frequently used cases already included in `amdis/ProblemStatTraits.hpp`. Those include
```c++
// Composition of any number of lagrange bases with any degree
template <class Grid, int... degrees>
struct LagrangeBasis;
// As above but a structured grid is chosen
template <int dim, int... degrees>
struct YaspGridBasis;
// The taylor-hood basis as discussed above
template <class Grid, int k = 1>
struct TaylorHoodBasis;
```
If one of the above traits class is provided ProblemStat will create a new global basis on a call to `ProblemStat::initialize`. Afterwards a pointer to the basis can be obtained using the function `ProblemStat::globalBasis`.
```c++
using Grid = Dune::YaspGrid<2>; // 2-dimensional structured grid
ProblemStat<TaylorHoodBasis<Grid>> prob("myProblem");
prob.initialize(INIT_ALL);
auto& basis = *prob.globalBasis();
```
## Using the global basis
The `ParallelGlobalBasis` provides access to element indices and basis functions in the same way as a Dune-basis does, it is even derived from the Dune::DefaultGlobalBasis.
### Getting the total number of DOFs
If we are simple interested in getting the total number of DOFs the basis contains we can simply call `basis.dimension()`. This can be useful for preparing matrices and vectors for insertion.
```c++
std::size_t maxSize = basis.dimension();
std::vector<double> dofs;
dofs.resize(maxSize);
```
### Access to local basis functions using a LocalView
Within that interface we are restricted to elementwise access using a `LocalView`. This provides us with a way to work with the local basis functions on one grid element. We show a typical use in the following snippet. Note how we first need to bind the `LocalView` before we can use it.
```c++
auto localView = basis.localView();
for (const auto& e : elements(basis.gridView())) // loop over all grid elements the basis is defined on
{
localView.bind(e); // a LocalView must be bound to an element before being used
// do something
localView.unbind();
}
```
A bound LocalView has the method `LocalView::index(size_type)` mapping a local index to a global index. In other words it maps a local basis function defined on an element to its corresponding global basis function. We can use that to build a global stiffness matrix from local contributions on a single element and then insert those into a single matrix in global indices.
Another method is `LocalView::tree()` that returns the root node of the local basis tree. The main method all nodes share is `Node::localIndex(size_type)` which maps a leaf node index to the local index within the local basis tree.
#### The for_each_node and for_each_leaf_node helper functions
Quite often we want to perform operations on certain nodes of the tree other than the root node. This can be useful if we want to work with the actual implementations wich are usually leaf nodes. For this we can use the helper functions `for_each_node` and `for_each_leaf_node` defined in `amdis/typetree/Traversal.hpp`. Those functions traverse the tree and call the given function on every (leaf) node with the node and a type of tree index we shall explain later as arguments. we show the usage with the following example using the Taylor-Hood-Basis defined above. Here we assume to have a `LocalView` `localView` that is bound to an element.
```c++
auto root = localView.tree();
for_each_leaf_node(root, [&](auto const& node, auto const& tp) {
// do something on node
});
```
#### Working on specific nodes using a TreePath {: #globalbasis-using-treepath }
There are cases when we want to address a certain tree node. To come back to our Taylor-Hood example we might want to add an operator that only acts on the velocity vector or the pressure, or even just a single component of the velocity vector. For this end a type of node index exists, called `TreePath`. This defines a list of indices specifying which path to take from the root at each node on the way. For technical reasons the index type is either an `int` (for power nodes) or `std::integral_constant<std::size_t, i>` for composite nodes. For convenience we can use `Dune::Indices::_0` instead of writing `std::integral_constant<std::size_t, 0>`. Note how indices always start at 0 and follow the order we specify when creating the `PreBasis`.
Using once again the Taylor-Hood basis we can use the `treepath(Args...)` function to convert indices into a `TreePath` for certain nodes.
```c++
auto tp_v = treepath(Dune::Indices::_0); // velocity vector
auto tp_p = treepath(Dune::Indices::_1); // pressure
auto tp_v2 = treepath(Dune::Indices::_0, 1); // second component of the velocity vector
auto tp_root = treepath(); // root
```
Recall that `localView.tree()` returns the root of the basis tree. Using a `TreePath` we can access a specific node using the free funtion `Dune::TypeTree::child(Node, TreePath)`.
```c++
auto root = localView.tree();
auto node_v = Dune::TypeTree::child(root, tp_v); // power node representing the velocity vector
auto node_p = Dune::TypeTree::child(root, tp_p); // lagrange node representing the pressure
```
### Using the lagrange (pre-)basis
Many applications require only lagrange elements or compositions, for example a Navier-Stokes problem may use the Taylor-Hood basis we introduced above that consists of `dim` second order lagrange elements and one first order lagrange element. For that reason we will now take a closer look at the implementation of those lagrange elements in AMDiS.
AMDiS borrows the implementation from the underlying DUNE-functions module. This defines lagrange elements of a given order `k`. Recall that we can add lagrange nodes to a (pre-)basis using `Dune::Functions::BasisFactory::lagrange<k>()`. In the previous section we have seen how we can access the leaf nodes of a basis. With that we can get the implementation of the local finite element with the function `Dune::Functions::LagrangeNode::finiteElement()`.
We shall show the usage of the local finite element class handed out by the function above. Its interface defines the functions `size()`, `localCoefficients()`, `localInterpolation()` and `localBasis()`. We shall explain those with an example. Assume we have `localView` bound to an element and have vectors `dofs` and `dofs2` that store the coefficients of some grid function with global indexing (e.g. a solution vector). `Domain` is the type used for local coordinates of the reference element.
```c++
auto root = localView.tree();
for_each_leaf_node(root, [&](auto const& node, auto const& tp) {
// Extract some types from the node
using Node = Underlying_t<decltype(node)>;
using LocalFunction = typename Node::FiniteElement::Traits::LocalInterpolationType::FunctionType;
using Domain = typename LocalFunction::Traits::DomainType;
using Range = typename LocalFunction::Traits::RangeType;
auto const& fe = node.finiteElement();
auto feSize = fe.size();
// get information about the position of a basis function in the element
auto const& localCoefficients = fe.localCoefficients();
for (std::size_t i = 0; i < feSize; ++i)
{
auto const& localKey = localCoefficients.localKey(i);
// do something
}
// interpolate a local function onto an element
auto f_ = [](Domain const& x) -> Range { return x[0] + x[1]; };
auto f = functionFromCallable<Range(Domain)>(f_);
std::vector<Range> localCoeff;
fe.localInterpolation().interpolate(f, localCoeff); // interpolate f onto the local basis
for (std::size_t i = 0; i < feSize; ++i)
{
std::size_t globalIndex = localView.index(node.localIndex(i)); // get the global index
dofs[globalIndex] = localCoeff[i]; // set global coefficient to the local coefficient
}
// evaluate at a local coordinate
std::vector<Range> localContrib(feSize);
fe.localBasis().evaluateFunction({0.2, 0.2}, localContrib); // get contributions of local basis functions at a given local coordinate
Range sum = 0;
for (std::size_t i = 0; i < feSize; ++i)
{
std::size_t globalIndex = localView.index(node.localIndex(i)); // get the global index
sum += dofs2[globalIndex] * localContrib[i]; // add contribution from i-th local basis function
}
});
```
### Keeping indices and data updated when the grid changes
Within an adaptive simulation we may want to add or remove grid elements by refinement or coarsening. When this happens the number of total elements or their relative position may change. Therefore the indexing scheme used by the global basis must be updated when changes to the underlying grid happen.
For this purpose the update method exists, which takes a GridView of the Grid after it has been changed as its only argument.
```c++
void update(GridView const& gv)
```
Usually we do not need to call this function - out of the box AMDiS with a ProblemStat doing most of the work will automatically call it for us. If user code is working with the underlying Dune-Grid directly there is no way for AMDiS to detect if any changes happen to it, therefore update must be called manually in such a scenario.
### The globalRefineCallback function
Certain grid managers support the use of a callback function when doing global refinement. Using a ParallelGlobalBasis in this context is currently not supported.
......@@ -35,7 +35,7 @@ elementary terms.
### Examples of expressions
Before we give examples where and how to use GridFunctions, we demonstrate what an
`Expression` could be, to create a GridFunction from. In the following examples,
we assume that a [ProblemStat](reference/Problem#class-problemstat) named `prob` is already
we assume that a [ProblemStat](../Problem#class-problemstat) named `prob` is already
created and initialized.
#### 1. Discrete Functions
......@@ -95,7 +95,7 @@ prob.addMatrixOperator(opB, Row, Col);
auto opL = makeOperator(LinearForm, Expression);
prob.addVectorOperator(opL, Row);
```
See also [makeOperator()](reference/Operators#function-makeoperator).
See also [makeOperator()](../Operators#function-makeoperator).
#### 2. Usage of GridFunctions in BoundaryConditions:
```c++
......@@ -152,7 +152,7 @@ auto value = integrate(Expression, prob.gridView());
## function `evalAtQP()`
Defined in header [`<amdis/gridfunctions/AnalyticGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/AnalyticGridFunction.hpp)
Defined in header [`<amdis/gridfunctions/AnalyticGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/AnalyticGridFunction.hpp)
```c++
template <class Function>
......@@ -172,7 +172,7 @@ Creates a `GridFunction` that evaluates a functor in global coordinates.
## function `X()`
Defined in header [`<amdis/gridfunctions/CoordsGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/CoordsGridFunction.hpp)
Defined in header [`<amdis/gridfunctions/CoordsGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/CoordsGridFunction.hpp)
```c++
inline auto X(); // (1)
......@@ -190,7 +190,7 @@ global coordinates (2).
## function `gradientAtQP()`
Defined in header [`<amdis/gridfunctions/DerivativeGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/DerivativeGridFunction.hpp)
Defined in header [`<amdis/gridfunctions/DerivativeGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/DerivativeGridFunction.hpp)
```c++
template <class Expr>
......@@ -218,7 +218,7 @@ gradientAtQP(X(0) + X(1) + prob.solution(_0))
## function `invokeAtQP()`
Defined in header [`<amdis/gridfunctions/FunctorGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/gridfunctions/FunctorGridFunction.hpp)
Defined in header [`<amdis/gridfunctions/FunctorGridFunction.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/gridfunctions/FunctorGridFunction.hpp)
```c++
template <class Functor, class... Exprs>
......
This diff is collapsed.
# MatrixBase and VectorBase {: #group-matvecbase }
# MatrixFacade and VectorFacade {: #group-matvecbase }
## Summary
The class [`VectorBase`](#class-vectorbase) is a base class and interface class for all vectors associated to the
indices of a global basis and, correspondingly, the class [`MatrixBase`](#class-matrixbase) is a base class and interface
The class [`VectorFacade`](#class-vectorfacade) is a base class and interface class for all vectors associated to the
indices of a global basis and, correspondingly, the class [`MatrixFacade`](#class-matrixfacade) is a base class and interface
class for all matrices associated to the indices of a row and column global basis.
### Classes
Class | Descriptions
----------------------------------|---------------------------------------------
[`MatrixBase`](#class-matrixbase) | Base class for vectors
[`VectorBase`](#class-vectorbase) | Base class for Matrices
Class | Descriptions
--------------------------------------|-----------------------------------------
[`MatrixFacade`](#class-matrixfacade) | Base class for matrices
[`VectorFacade`](#class-vectorfacade) | Base class for vectors
## class `MatrixBase`
Defined in header [`<amdis/linearalgebra/MatrixBase.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/linearalgebra/MatrixBase.hpp)
## class `MatrixFacade`
Defined in header [`<amdis/linearalgebra/MatrixFacade.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/linearalgebra/MatrixFacade.hpp)
```c++
template <class RowBasis,
class ColBasis,
class Backend>
class MatrixBase
template <class T, template <class> class MatrixImpl>
class MatrixFacade
```
`MatrixBase` is an interface class for matrices storing additionally pointers to the row and column basis, `RowBasis` and `ColBasis`, respectively.
`MatrixFacade` is an interface class for matrices storing the implementation and rediricting to its interface functions.
The template parameter `Backend` refers to the actual implementation of the matrix data-structure.
The template parameter `T` defines the coefficient type of the matrix, `MatrixImpl` refers to the actual implementation of the matrix data-structure.
### Member Types
Member Type | Definition
--------------------------------|---------------------------------------------
`RowBasis` | The type of the finite element space / basis of the row
`RowLocalView` | `typename RowBasis::LocalView`
`ColBasis` | The type of the finite element space / basis of the column
`ColLocalView` | `typename ColBasis::LocalView`
`Backend` | The Linear-Algebra backend used to store the assembled coefficients
Member Type | Definition
--------------|---------------------------------------------------------------
`Impl` | The Linear-Algebra implementation used to store the assembled coefficients
## class `VectorBase`
Defined in header [`<amdis/linearalgebra/VectorBase.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/src/amdis/linearalgebra/VectorBase.hpp)
## class `VectorFacade`
Defined in header [`<amdis/linearalgebra/VectorFacade.hpp>`](https://gitlab.mn.tu-dresden.de/amdis/amdis-core/blob/master/amdis/linearalgebra/VectorFacade.hpp)
```c++
template <class Basis,
class Backend>
class VectorBase
template <class T, template <class> class VectorImpl>
class VectorFacade
```
`VectorBase` is an interface class for vectors storing an additional pointer to the global basis, `Basis`.
`VectorFacade` is an interface class for vectors storing the implementation and rediricting to its interface functions.
The template parameter `Backend` refers to the actual implementation of the vector data-structure.
The template parameter `T` defines the coefficient type of the vector, `VectorImpl` refers to the actual implementation of the vector data-structure.
### Member Types
Member Type | Definition
--------------------------------|---------------------------------------------
`GlobalBasis` | The type of the functionspace basis
`LocalView` | `typename GlobalBasis::LocalView`
`Backend` | The Linear-Algebra backend used to store the assembled coefficients
Member Type | Definition
-------------|----------------------------------------------------------------
`Impl` | The Linear-Algebra implementation used to store the assembled coefficients
### Member functions
Function | Descriptions
--------------------------------|---------------------------------------------
[*(constructor)*](#function-vectorbasevectorbase) | Construct the VectorBase
[`basis`](#function-vectorbasebasis) | Return the GlobalBasis associated with the vector
[`backend`](#function-vectorbasebackend) | Return the backend vector wrapper implementing the actual algebra
[*(constructor)*](#function-vectorfacadevectorfacade) | Construct the VectorFacade
[`impl`](#function-vectorfacadeimpl) | Return the vector implementation
**Capacity**
Function | Descriptions
--------------------------------|---------------------------------------------
[`localSize,globalSize`](#function-vectorbasesize) | The number of entries in the local/global part of the vector
[`resize,resizeZero`](#function-vectorbaseresize) | Resize the vector to the size of the basis
[`init`](#function-vectorbaseinit) | Prepare the vector for insertion of values
[`finish`](#function-vectorbasefinish) | Finish the insertion of values
[`localSize,globalSize`](#function-vectorfacadesize) | The number of entries in the local/global part of the vector
[`resize,resizeZero`](#function-vectorfacaderesize) | Resize the vector to the size of the basis
[`init`](#function-vectorfacadeinit) | Prepare the vector for insertion of values
[`finish`](#function-vectorfacadefinish) | Finish the insertion of values
**Element access**
Function | Descriptions
--------------------------------|---------------------------------------------
[`at`](#function-vectorbaseat) | Return the value of the vector at the given local index
[`gather`](#function-vectorbasegather) | Extract values from the vector referring to the given local indices
[`at`](#function-vectorfacadeat) | Return the value of the vector at the given local index
[`gather`](#function-vectorfacadegather) | Extract values from the vector referring to the given local indices
**Modifiers**
Function | Descriptions
--------------------------------|---------------------------------------------
[`insert,set,add`](#function-vectorbaseinsert) | Insert a single value into the matrix (add or overwrite to existing value)
[`scatter`](#function-vectorbasescatter) | Insert a block of values into the vector
[`copy`](#function-vectorbasescatter) | Copies a block of values into the vector
[`forEach`](#function-vectorbasescatter) | Apply a functor to each value at given indices
[`insert,set,add`](#function-vectorfacadeinsert) | Insert a single value into the matrix (add or overwrite to existing value)
[`scatter`](#function-vectorfacadescatter) | Insert a block of values into the vector
[`forEach`](#function-vectorfacadescatter) | Apply a functor to each value at given indices
## function `VectorBase::VectorBase`
## function `VectorFacade::VectorFacade`
```c++
VectorBase(std::shared_ptr<GlobalBasis> basis) // (1)
template <class GB>
VectorBase(GB&& basis) // (2)
VectorFacade(GlobalBasis const& basis)
```
(1) Constructor that stores the `shared_ptr` of the global basis. (2) Constructor that forwards to (1) by wrapping reference
into (non-destroying) `shared_ptr`.
#### Arguments
`GB basis`
: Reference (lvalue or rvalue) to a global basis. `GB` must be `Concepts::Similar` to the type `GlobalBasis`. If `basis` is a lvalue-reference,
it is wrapped into a non-destroying `shared_ptr`, if it is a rvalue-reference, it is moved into a new Object, created as `shared_ptr`.
See `Dune::wrap_or_move`.
#### Requirements
- `GB` must be similar to `GlobalBasis`, i.e., the same type up to const and reference qualifiers.
## function `VectorBase::basis`
```c++
std::shared_ptr<GlobalBasis> const& basis() const // (1)
std::shared_ptr<GlobalBasis> const& basis() // (2)
```
Return the basis associated to the vector
Constructor that passes the global basis to the implementation.
## function `VectorBase::backend`
## function `VectorFacade::impl`
```c++
Backend const& backend() const // (1)
Backend& backend() // (2)
Impl const& impl() const // (1)
Impl& impl() // (2)
```
Return the underlying linear algebra backend
Return the underlying linear algebra implementation
## function `VectorBase::localSize,globalSize` {: #function-vectorbasesize }
## function `VectorFacade::localSize,globalSize` {: #function-vectorfacadesize }
```c++
std::size_t localSize() const // (1)
std::size_t globalSize() const // (2)
......@@ -137,7 +105,7 @@ std::size_t globalSize() const // (2)
Return the number of entries in the (1) local part of the vector, or (2) in the global vector.
## function `VectorBase::resize,resizeZero` {: #function-vectorbaseresize }
## function `VectorFacade::resize,resizeZero` {: #function-vectorfacaderesize }
```c++
std::size_t resize() const // (1)
std::size_t resizeZero() const // (2)
......@@ -145,25 +113,25 @@ std::size_t resizeZero() const // (2)
Resize the vector to the size of the basis (1) and in case of (2) also set all entries to zero.
## function `VectorBase::init`
## function `VectorFacade::init`
```c++
void init(bool clear)
```
Prepare the vector for insertion of values, finish the insertion with a call to [finish()](#function-vectorbasefinish).
Prepare the vector for insertion of values, finish the insertion with a call to [finish()](#function-vectorfacadefinish).
#### Arguments
`bool clear`
: If true, sets the vector to zero before insertion
## function `VectorBase::finish`
## function `VectorFacade::finish`
```c++
void finish()
```
Finish the insertion of values. Must be called at the end of the insertion. See also [init()](#function-vectorbaseinit).