and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
Discretization
Discretization
--------------
--------------
...
@@ -34,9 +35,9 @@ with $`0=t^0<t^1<\ldots<t^N=T`$, timestep $`\tau=t^{k+1} - t^k`$, and given init
...
@@ -34,9 +35,9 @@ with $`0=t^0<t^1<\ldots<t^N=T`$, timestep $`\tau=t^{k+1} - t^k`$, and given init
### Finite-Element formulation
### Finite-Element formulation
Let $`\Omega`$ be partitioned into quasi-uniform elements by a conforming triangulation $`\mathcal{T}_h`$. The functions $`\mathbf{u}`$ and $`p`$ are approximated by functions from the discrete functionspace $`\mathbb{T}_h := [\mathbb{V}_{2,\,g_i}]^d\times \mathbb{V}_1`$ with $`\mathbb{V}_{p} := \{v\in C^0(\Omega)\,:\, v|_T\in\mathbb{P}_p(T),\, \forall T\in\mathcal{T}_h\}`$ and $`\mathbb{V}_{p,\,g} := \{v\in \mathbb{V}_p\,:\,\operatorname{tr}_{\partial\Omega}=g\}`$, where $`\mathbb{P}_p`$ is the space of polynomials of order at most $`p`$. The space $`\mathbb{T}_h`$ will be denoted as Taylor-Hood space.
Let $`\Omega`$ be partitioned into quasi-uniform elements by a conforming triangulation $`\mathcal{T}_h`$. The functions $`\mathbf{u}`$ and $`p`$ are approximated by functions from the discrete functionspace $`\mathbb{T}_h := [\mathbb{V}_{2,\,g_i}]^d\times \mathbb{V}_1`$ with $`\mathbb{V}_{p} := \{v\in C^0(\Omega)\,:\, v|_T\in\mathbb{P}_p(T),\, \forall T\in\mathcal{T}_h\}`$ and $`\mathbb{V}_{p,\,g} := \{v\in \mathbb{V}_p\,:\,\operatorname{tr}_{\partial\Omega} v=g\}`$, where $`\mathbb{P}_p`$ is the space of polynomials of order at most $`p`$. The space $`\mathbb{T}_h`$ will be denoted as Taylor-Hood space.
Let `Grid grid` be the Duen grid type representing the triangulation $`\mathcal{T}_h`$ of the domain $`\Omega`$, then
Let `Grid grid` be the Dune grid type representing the triangulation $`\mathcal{T}_h`$ of the domain $`\Omega`$, then
the basis of the Taylor-Hood space can be written as a composition of Lagrange bases:
the basis of the Taylor-Hood space can be written as a composition of Lagrange bases:
```c++
```c++
...
@@ -45,13 +46,94 @@ auto basis = makeBasis(grid.leafGridView(),
...
@@ -45,13 +46,94 @@ auto basis = makeBasis(grid.leafGridView(),