corrected the velocity space authored by Praetorius, Simon's avatar Praetorius, Simon
......@@ -19,9 +19,9 @@ for $`t\in[0,T]`$, given $`\mathbf{u}(0,\cdot)\equiv\mathbf{u}^0`$.
The pair $`\big(\mathbf{u}(t,\cdot), p(t,\cdot)\big)`$ is thus in the product space $`\mathbf{V}_\mathbf{g}\times Q`$ where $`\mathbf{V}_\mathbf{g}`$ is also a product of $`H^1`$ spaces, i.e., $`\mathbf{V}_\mathbf{g}=V_{g_0}\times V_{g_1}\times V_{g_2}\simeq [V_{g_i}]^d`$. Later, this space will be approximated with a Taylor-Hood space of piecewise quadratic and linear functions.
A linearized time-discretization with a semi-implicit backward Euler scheme then reads: for $`k=0,1,2,\ldots N`$ find $`\mathbf{u}{k+1}\in \mathbf{V}_\mathbf{g}, p\in Q`$, s.t.
A linearized time-discretization with a semi-implicit backward Euler scheme then reads: for $`k=0,1,2,\ldots N`$ find $`\mathbf{u}^{k+1}\in\mathbf{V}_\mathbf{g}, p\in Q`$, s.t.
```math
\int_\Omega \varrho\big(\frac{1}{\tau}(\mathbf{u}^{k+1} - \mathbf{u}^k) + (\mathbf{u}^k\cdot\nabla)\mathbf{u}^{k+1}\big)\cdot\mathbf{v} + \nu\nabla\mathbf{u}^{k+1}:\nabla\mathbf{v} + p\,\nabla\cdot\mathbf{v}\,\text{d}\mathbf{x} = \int_\Omega \mathbf{f}(t^{k+1})\cdot\mathbf{v}\,\text{d}\mathbf{x},\qquad\forall \mathbf{v}\in \mathbf{V}_0, \\
\int_\Omega q\,\nabla\cdot\mathbf{u}^{k+1}\,\text{d}\mathbf{x} = 0,\qquad \forall q\in Q.
```
with $`0=t^0<t^1<t^2<\ldots<t^N=T`$ and given $`\mathbf{u}^0`$.
with $`0=t^0<t^1<\ldots < t^k <\ldots<t^N=T`$, $`\tau=t^{k+1} - t^k`$, and given $`\mathbf{u}^0`$.