and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in \mathbf{V}_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
The pair $`\big(\mathbf{u}(t,\cdot), p(t,\cdot)\big)`$ is thus in the product space $`\mathbf{V}_\mathbf{g}\times L^2(\Omega)`$ where $`\mathbf{V}_\mathbf{g}`$ is also a product space of $`H^1`$ spaces, i.e., $`\mathbf{V}_\mathbf{g}=V_{g_0}\times V_{g_1}\times V_{g_2}\simeq [V_{g_i}]^d`$. Later, this space will be approximated with a Taylor-Hood space of piecewise quadratic and linear functions.