corrected the velocity space authored by Praetorius, Simon's avatar Praetorius, Simon
...@@ -5,13 +5,13 @@ We consider the incompressible Navier-Stokes equation in a rectangular domain $` ...@@ -5,13 +5,13 @@ We consider the incompressible Navier-Stokes equation in a rectangular domain $`
\varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) + \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\ \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) + \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\
\nabla\cdot\mathbf{u} = 0 \nabla\cdot\mathbf{u} = 0
``` ```
with velocity $`\mathbf{u}`$, pressure $`p`$, dynamic viscosity $`\nu`$, with velocity $`\mathbf{u}`$, pressure $`p`$, density $\varrho$, dynamic viscosity $`\nu`$,
rate-of-strain tensor $`\mathbf{D}(\mathbf{u})=\frac{1}{2}(\nabla\mathbf{u}+\nabla\mathbf{u}^\top)`$, rate-of-strain tensor $`\mathbf{D}(\mathbf{u})=\frac{1}{2}(\nabla\mathbf{u}+\nabla\mathbf{u}^\top)`$,
and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$. and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations). For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V:=H^1(\Omega)^d`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
```math ```math
\int_\Omega \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u})\cdot\mathbf{v} + \nu\nabla\mathbf{u}:\nabla\mathbf{v} - p\nabla\cdot\mathbf{v}\,\text{d}\mathbf{x} = \int_\Omega \mathbf{f}\cdot\mathbf{v}\,\text{d}\mathbf{x}\qquad\forall \mathbf{v}\in V, \\ \int_\Omega \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u})\cdot\mathbf{v} + \nu\nabla\mathbf{u}:\nabla\mathbf{v} - p\nabla\cdot\mathbf{v}\,\text{d}\mathbf{x} = \int_\Omega \mathbf{f}\cdot\mathbf{v}\,\text{d}\mathbf{x}\qquad\forall \mathbf{v}\in V_0, \\
\int_\Omega q\nabla\mathbf{u}\,\text{d}\mathbf{x} = 0\qquad \forall q\in Q. \int_\Omega q\nabla\mathbf{u}\,\text{d}\mathbf{x} = 0\qquad \forall q\in Q.
``` ```