and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
and external volume force $`\mathbf{f}`$, w.r.t. to boundary conditions $`\mathbf{u}=\mathbf{g}`$ on $`\partial\Omega`$.
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations).
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V:=H^1(\Omega)^d`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that