laplace identity authored by Praetorius, Simon's avatar Praetorius, Simon
......@@ -64,14 +64,15 @@ Implementation
We split the implementation into three parts, 1. the time derivative, 2. the stokes
operator and 3. any external forces. For addressing the different components of
the Taylor-Hood basis, we introduce the treepaths `auto _v = Dune::Indices::_0` and
`auto _p = Dune::Indices::_1` for velocity and pressure, respectively.
the Taylor-Hood basis, we introduce the treepaths `_v = Dune::Indices::_0` and
`_p = Dune::Indices::_1` for velocity and pressure, respectively.
### Problem framework
We have an instationary problem consistenting of a sequence of stationary equations
We have an in-stationary problem consisting of a sequence of stationary equations
for each timestep, thus we combine a `ProblemInstat` with a `Problemstat`.
```c++
using namespace AMDiS;
ProblemStat prob("stokes", grid, basis);
prob.initialize(INIT_ALL);
......@@ -99,7 +100,7 @@ prob.addMatrixOperator(opTime, _v, _v);
// <1/tau * u^old, v>
auto opTimeOld = makeOperator(tag::testvec{},
density * invTau * prob.solution(_v));
density * invTau * probInstat.oldSolution(_v));
prob.addVectorOperator(opTimeOld, _v);
for (int i = 0; i < Grid::dimensionworld; ++i) {
......@@ -137,3 +138,7 @@ prob.addMatrixOperator(opP, _v, _p);
auto opDiv = makeOperator(tag::test_divtrialvec{}, 1.0);
prob.addMatrixOperator(opDiv, _p, _v);
```
where we have used the identity
```math
\nabla\mathbf{u}:\nabla\mathbf{v} = \sum_i \nabla u_i\cdot\nabla v_i
```
\ No newline at end of file