corrected the velocity space authored by Praetorius, Simon's avatar Praetorius, Simon
...@@ -2,7 +2,7 @@ Navier-Stokes equation ...@@ -2,7 +2,7 @@ Navier-Stokes equation
====================== ======================
We consider the incompressible Navier-Stokes equation in a rectangular domain $`\Omega=(0,L_x)\times(0,L_y)`$, We consider the incompressible Navier-Stokes equation in a rectangular domain $`\Omega=(0,L_x)\times(0,L_y)`$,
```math ```math
\varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) + \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\ \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) - \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\
\nabla\cdot\mathbf{u} = 0 \nabla\cdot\mathbf{u} = 0
``` ```
with velocity $`\mathbf{u}`$, pressure $`p`$, density $\varrho$, dynamic viscosity $`\nu`$, with velocity $`\mathbf{u}`$, pressure $`p`$, density $\varrho$, dynamic viscosity $`\nu`$,
...@@ -12,6 +12,7 @@ For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier ...@@ -12,6 +12,7 @@ For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
```math ```math
\int_\Omega \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u})\cdot\mathbf{v} + \nu\nabla\mathbf{u}:\nabla\mathbf{v} - p\nabla\cdot\mathbf{v}\,\text{d}\mathbf{x} = \int_\Omega \mathbf{f}\cdot\mathbf{v}\,\text{d}\mathbf{x}\qquad\forall \mathbf{v}\in V_0, \\ \int_\Omega \varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u})\cdot\mathbf{v} + \nu\nabla\mathbf{u}:\nabla\mathbf{v} + p\,\nabla\cdot\mathbf{v}\,\text{d}\mathbf{x} = \int_\Omega \mathbf{f}\cdot\mathbf{v}\,\text{d}\mathbf{x},\qquad\forall \mathbf{v}\in V_0, \\
\int_\Omega q\nabla\mathbf{u}\,\text{d}\mathbf{x} = 0\qquad \forall q\in Q. \int_\Omega q\,\nabla\cdot\mathbf{u}\,\text{d}\mathbf{x} = 0,\qquad \forall q\in Q.
``` ```
for $`t\in[0,T]`$.