We consider the incompressible Navier-Stokes equation in a rectangular domain $`\Omega=(0,L_x)\times(0,L_y)`$,
We consider the incompressible Navier-Stokes equation in a rectangular domain $`\Omega=(0,L_x)\times(0,L_y)`$,
```math
```math
\varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) + \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\
\varrho(\partial_t\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u}) - \nabla\cdot\big(2\nu\mathbf{D}(\mathbf{u})\big) - \nabla p = \mathbf{f},\qquad\text{ in }\Omega \\
\nabla\cdot\mathbf{u} = 0
\nabla\cdot\mathbf{u} = 0
```
```
with velocity $`\mathbf{u}`$, pressure $`p`$, density $\varrho$, dynamic viscosity $`\nu`$,
with velocity $`\mathbf{u}`$, pressure $`p`$, density $\varrho$, dynamic viscosity $`\nu`$,
...
@@ -12,6 +12,7 @@ For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier
...
@@ -12,6 +12,7 @@ For a coarse overview, see also [Wikipedia](https://en.wikipedia.org/wiki/Navier
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that
In a weak variational formulation, we try to find $`\mathbf{u}(t,\cdot)\in V_\mathbf{g}:=\{\mathbf{v}\in H^1(\Omega)^d\,:\, \operatorname{tr}_{\partial\Omega}\mathbf{v} = \mathbf{g}\}`$ and $`p(t,\cdot)\in Q:=L^2(\Omega)`$, such that