GlobalMatrixSolver.cc 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#include "GlobalMatrixSolver.h"
#include "DOFVector.h"
#include "Debug.h"
#include "SystemVector.h"
#include "parallel/StdMpi.h"

#include "petscksp.h"

namespace AMDiS {

  PetscErrorCode myKSPMonitor(KSP ksp, PetscInt iter, PetscReal rnorm, void *)
  {    
13
    if (iter % 100 == 0 && MPI::COMM_WORLD.Get_rank() == 0)
14
15
16
17
18
      std::cout << "[0]  Petsc-Iteration " << iter << ": " << rnorm << std::endl;

    return 0;
  }
 
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

  void GlobalMatrixSolver::addToMeshDistributor(MeshDistributor& m)
  {
    meshDistributor = &m;
    m.addProblemStat(this);
  }


  void GlobalMatrixSolver::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag,
					     bool assembleMatrix,
					     bool assembleVector)
  {
    meshDistributor->checkMeshChange();
    ProblemVec::buildAfterCoarsen(adaptInfo, flag, assembleMatrix, assembleVector);
  }


  void GlobalMatrixSolver::solve(AdaptInfo *adaptInfo, bool fixedMatrix)
37
38
39
  {
    FUNCNAME("GlobalMatrixSolver::solve()");

40
41
    TEST_EXIT(meshDistributor)("Should not happen!\n");

42
43
44
45
46
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif
    clock_t first = clock();

47
48
    fillPetscMatrix(systemMatrix, rhs);
    solvePetscMatrix(*solution);
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

#ifdef _OPENMP
    INFO(info, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif    
  }


  void GlobalMatrixSolver::setDofMatrix(DOFMatrix* mat, int dispMult, 
					int dispAddRow, int dispAddCol)
  {
    FUNCNAME("GlobalMatrixSolver::setDofMatrix()");

    TEST_EXIT(mat)("No DOFMatrix!\n");

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits= mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::col<Matrix>::type col(mat->getBaseMatrix());
    traits::const_value<Matrix>::type value(mat->getBaseMatrix());

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    std::vector<int> cols;
    std::vector<double> values;
    cols.reserve(300);
    values.reserve(300);

    // === Traverse all rows of the dof matrix and insert row wise the values ===
    // === to the petsc matrix.                                               ===

    for (cursor_type cursor = begin<row>(mat->getBaseMatrix()), 
	   cend = end<row>(mat->getBaseMatrix()); cursor != cend; ++cursor) {

      cols.clear();
      values.clear();

      // Global index of the current row dof.
93
      DegreeOfFreedom globalRowDof = meshDistributor->mapLocalToGlobal(*cursor);
94
      // Test if the current row dof is a periodic dof.
95
      bool periodicRow = (meshDistributor->getPeriodicDofMap().count(globalRowDof) > 0);
96
97
98
99
100
101
102
103
104
105
106
107


      // === Traverse all non zero entries of the row and produce vector cols ===
      // === with the column indices of all row entries and vector values     ===
      // === with the corresponding values.                                   ===

      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	   icursor != icend; ++icursor) {

	// Set only non null values.
	if (value(*icursor) != 0.0) {
	  // Global index of the current column index.
108
	  int globalColDof = meshDistributor->mapLocalToGlobal(col(*icursor));
109
110
111
112
113
	  // Calculate the exact position of the column index in the petsc matrix.
	  int colIndex = globalColDof * dispMult + dispAddCol;

	  // If the current row is not periodic, but the current dof index is periodic,
	  // we have to duplicate the value to the other corresponding periodic columns.
114
115
 	  if (periodicRow == false && 
	      meshDistributor->getPeriodicDofMap().count(globalColDof) > 0) {
116
117
	    // The value is assign to n matrix entries, therefore, every entry 
	    // has only 1/n value of the original entry.
118
119
	    double scalFactor = 
	      1.0 / (meshDistributor->getPeriodicDof(globalColDof).size() + 1.0);
120
121
122
123
124
125
126

	    // Insert original entry.
 	    cols.push_back(colIndex);
 	    values.push_back(value(*icursor) * scalFactor);

	    // Insert the periodic entries.
 	    for (std::set<DegreeOfFreedom>::iterator it = 
127
128
		   meshDistributor->getPeriodicDof(globalColDof).begin();
 		 it != meshDistributor->getPeriodicDof(globalColDof).end(); ++it) {
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
 	      cols.push_back(*it * dispMult + dispAddCol);
 	      values.push_back(value(*icursor) * scalFactor);
	    }
 	  } else {
	    // Neigher row nor column dof index is periodic, simple add entry.
	    cols.push_back(colIndex);
	    values.push_back(value(*icursor));
	  }
	}
      }


      // === Up to now we have assembled on row. Now, the row must be send to the ===
      // === corresponding rows to the petsc matrix.                              ===

      // Calculate petsc row index.
      int rowIndex = globalRowDof * dispMult + dispAddRow;
      
      if (periodicRow) {
	// The row dof is periodic, so send dof to all the corresponding rows.

150
151
	double scalFactor = 
	  1.0 / (meshDistributor->getPeriodicDof(globalRowDof).size() + 1.0);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
	
	int diagIndex = -1;
	for (int i = 0; i < static_cast<int>(values.size()); i++) {
	  // Change only the non diagonal values in the col. For the diagonal test
	  // we compare the global dof indices of the dof matrix (not of the petsc
	  // matrix!).
	  if ((cols[i] - dispAddCol) / dispMult != globalRowDof)
	    values[i] *= scalFactor;
	  else
	    diagIndex = i;
	}
	
	// Send the main row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);	
 
	// Set diagonal element to zero, i.e., the diagonal element of the current
	// row is not send to the periodic row indices.
	if (diagIndex != -1)
	  values[diagIndex] = 0.0;

	// Send the row to all periodic row indices.
174
175
	for (std::set<DegreeOfFreedom>::iterator it = meshDistributor->getPeriodicDof(globalRowDof).begin();
	     it != meshDistributor->getPeriodicDof(globalRowDof).end(); ++it) {
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
	  int perRowIndex = *it * dispMult + dispAddRow;
	  MatSetValues(petscMatrix, 1, &perRowIndex, cols.size(), 
		       &(cols[0]), &(values[0]), ADD_VALUES);
	}

      } else {
	// The row dof is not periodic, simply send the row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);
      }    
    }
  }


  void GlobalMatrixSolver::setDofVector(Vec& petscVec, DOFVector<double>* vec, 
					int dispMult, int dispAdd)
  {
    // Traverse all used dofs in the dof vector.
    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    for (dofIt.reset(); !dofIt.end(); ++dofIt) {
      // Calculate global row index of the dof.
197
      DegreeOfFreedom globalRow = meshDistributor->mapLocalToGlobal(dofIt.getDOFIndex());
198
199
200
      // Calculate petsc index of the row dof.
      int index = globalRow * dispMult + dispAdd;

201
      if (meshDistributor->getPeriodicDofMap().count(globalRow) > 0) {
202
203
	// The dof index is periodic, so devide the value to all dof entries.

204
	double value = *dofIt / (meshDistributor->getPeriodicDof(globalRow).size() + 1.0);
205
206
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);

207
208
	for (std::set<DegreeOfFreedom>::iterator it = meshDistributor->getPeriodicDof(globalRow).begin();
	     it != meshDistributor->getPeriodicDof(globalRow).end(); ++it) {
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
	  index = *it * dispMult + dispAdd;
	  VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
	}

      } else {
	// The dof index is not periodic.
	double value = *dofIt;
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
      }
    }    
  }


  void GlobalMatrixSolver::createPetscNnzStructure(Matrix<DOFMatrix*> *mat)
  {
    FUNCNAME("GlobalMatrixSolver::createPetscNnzStructure()");

    TEST_EXIT_DBG(!d_nnz)("There is something wrong!\n");
    TEST_EXIT_DBG(!o_nnz)("There is something wrong!\n");

229
    int nRankRows = meshDistributor->getNumberRankDofs() * nComponents;
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    d_nnz = new int[nRankRows];
    o_nnz = new int[nRankRows];
    for (int i = 0; i < nRankRows; i++) {
      d_nnz[i] = 0;
      o_nnz[i] = 0;
    }

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;
    typedef std::vector<std::pair<int, int> > MatrixNnzEntry;

    // Stores to each rank a list of nnz entries (i.e. pairs of row and column index)
    // that this rank will send to. This nnz entries will be assembled on this rank,
    // but because the row DOFs are not DOFs of this rank they will be send to the
    // owner of the row DOFs.
    std::map<int, MatrixNnzEntry> sendMatrixEntry;

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
 	if ((*mat)[i][j]) {
	  Matrix bmat = (*mat)[i][j]->getBaseMatrix();

	  traits::col<Matrix>::type col(bmat);
	  traits::const_value<Matrix>::type value(bmat);
	  
	  typedef traits::range_generator<row, Matrix>::type cursor_type;
	  typedef traits::range_generator<nz, cursor_type>::type icursor_type;
	  
	  for (cursor_type cursor = begin<row>(bmat), 
		 cend = end<row>(bmat); cursor != cend; ++cursor) {

	    // Map the local row number to the global DOF index and create from it
	    // the global PETSc row index of this DOF.
264
265
	    int petscRowIdx = 
	      meshDistributor->mapLocalToGlobal(*cursor) * nComponents + i;
266

267
	    if (meshDistributor->getIsRankDof(*cursor)) {
268
269
270
271
272

	      // === The current row DOF is a rank dof, so create the corresponding ===
	      // === nnz values directly on rank's nnz data.                        ===

	      // This is the local row index of the local PETSc matrix.
273
274
	      int localPetscRowIdx = 
		petscRowIdx - meshDistributor->getRstart() * nComponents;
275
276
277

#if (DEBUG != 0)    
	      if (localPetscRowIdx < 0 || localPetscRowIdx >= nRankRows) {
278
		std::cout << "ERROR in rank: " << meshDistributor->getMpiRank() << std::endl;
279
		std::cout << "  Wrong r = " << localPetscRowIdx << " " << *cursor 
280
			  << " " << meshDistributor->mapLocalToGlobal(*cursor) << " " 
281
282
283
284
285
286
287
288
289
			  << nRankRows << std::endl;
		ERROR_EXIT("Should not happen!\n");
	      }
#endif
	      
	      // Traverse all non zero entries in this row.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
290
291
		  int petscColIdx = 
		    meshDistributor->mapLocalToGlobal(col(*icursor)) * nComponents + j;
292
293
294

		  // The row DOF is a rank DOF, if also the column is a rank DOF, 
		  // increment the d_nnz values for this row, otherwise the o_nnz value.
295
296
		  if (petscColIdx >= meshDistributor->getRstart() * nComponents && 
		      petscColIdx < meshDistributor->getRstart() * nComponents + nRankRows)
297
298
299
300
301
302
		    d_nnz[localPetscRowIdx]++;
		  else
		    o_nnz[localPetscRowIdx]++;
		}    
	      }
	    } else {
303
304
	      typedef std::map<int, DofContainer> RankToDofContainer;

305
306
307
308
309
310
311
	      // === The current row DOF is not a rank dof, i.e., it will be created ===
	      // === on this rank, but after this it will be send to another rank    ===
	      // === matrix. So we need to send also the corresponding nnz structure ===
	      // === of this row to the corresponding rank.                          ===

	      // Find out who is the member of this DOF.
	      int sendToRank = -1;
312
313
	      for (RankToDofContainer::iterator it = meshDistributor->getRecvDofs().begin();
		   it != meshDistributor->getRecvDofs().end(); ++it) {
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
		for (DofContainer::iterator dofIt = it->second.begin();
		     dofIt != it->second.end(); ++dofIt) {
		  if (**dofIt == *cursor) {
		    sendToRank = it->first;
		    break;
		  }
		}

		if (sendToRank != -1)
		  break;
	      }

	      TEST_EXIT_DBG(sendToRank != -1)("Should not happen!\n");

	      // Send all non zero entries to the member of the row DOF.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
332
333
		  int petscColIdx = 
		    meshDistributor->mapLocalToGlobal(col(*icursor)) * nComponents + j;
334
335
336
337
338
339
340
341
342
343
344
345
346
347
		  
		  sendMatrixEntry[sendToRank].
		    push_back(std::make_pair(petscRowIdx, petscColIdx));
		}
	      }

	    } // if (isRankDof[*cursor]) ... else ...
	  } // for each row in mat[i][j]
	} // if mat[i][j]
      } 
    }

    // === Send and recv the nnz row structure to/from other ranks. ===

348
    StdMpi<MatrixNnzEntry> stdMpi(meshDistributor->getMpiComm(), true);
349
    stdMpi.send(sendMatrixEntry);
350
    stdMpi.recv(meshDistributor->getSendDofs());
351
352
353
354
355
356
357
358
359
360
361
362
    stdMpi.startCommunication<int>(MPI_INT);

    // === Evaluate the nnz structure this rank got from other ranks and add it to ===
    // === the PETSc nnz data structure.                                           ===

    for (std::map<int, MatrixNnzEntry>::iterator it = stdMpi.getRecvData().begin();
	 it != stdMpi.getRecvData().end(); ++it) {
      if (it->second.size() > 0) {
	for (unsigned int i = 0; i < it->second.size(); i++) {
	  int r = it->second[i].first;
	  int c = it->second[i].second;

363
	  int localRowIdx = r - meshDistributor->getRstart() * nComponents;
364
365
366
367
368

	  TEST_EXIT_DBG(localRowIdx >= 0 && localRowIdx < nRankRows)
	    ("Got row index %d/%d (nRankRows = %d) from rank %d. Should not happen!\n",
	     r, localRowIdx, nRankRows, it->first);
	  
369
370
	  if (c < meshDistributor->getRstart() * nComponents || 
	      c >= meshDistributor->getRstart() * nComponents + nRankRows)
371
372
373
374
375
376
377
378
379
380
381
382
383
384
	    o_nnz[localRowIdx]++;
	  else
	    d_nnz[localRowIdx]++;
	}
      }
    }  
  }


  void GlobalMatrixSolver::fillPetscMatrix(Matrix<DOFMatrix*> *mat, SystemVector *vec)
  {
    FUNCNAME("GlobalMatrixSolver::fillPetscMatrix()");

    clock_t first = clock();
385
386
    int nRankRows = meshDistributor->getNumberRankDofs() * nComponents;
    int nOverallRows = meshDistributor->getNumberOverallDofs() * nComponents;
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    // === Create PETSc vector (rhs, solution and a temporary vector). ===

    VecCreate(PETSC_COMM_WORLD, &petscRhsVec);
    VecSetSizes(petscRhsVec, nRankRows, nOverallRows);
    VecSetType(petscRhsVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscSolVec);
    VecSetSizes(petscSolVec, nRankRows, nOverallRows);
    VecSetType(petscSolVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscTmpVec);
    VecSetSizes(petscTmpVec, nRankRows, nOverallRows);
    VecSetType(petscTmpVec, VECMPI);

402
    if (!d_nnz || meshDistributor->getLastMeshChangeIndex() != lastMeshNnz) {
403
404
405
406
407
      if (d_nnz) {
	delete [] d_nnz;
	delete [] o_nnz;
      }

408
      createPetscNnzStructure(mat);
409
      lastMeshNnz = meshDistributor->getLastMeshChangeIndex();
410
    }
411
412
413
414
415
416
417
418
419
420
421

    // === Create PETSc matrix with the computed nnz data structure. ===

    MatCreateMPIAIJ(PETSC_COMM_WORLD, nRankRows, nRankRows, nOverallRows, nOverallRows,
		    0, d_nnz, 0, o_nnz, &petscMatrix);

    INFO(info, 8)("Fill petsc matrix 1 needed %.5f seconds\n", TIME_USED(first, clock()));

#if (DEBUG != 0)
    int a, b;
    MatGetOwnershipRange(petscMatrix, &a, &b);
422
423
424
425
    TEST_EXIT(a == meshDistributor->getRstart() * nComponents)
      ("Wrong matrix ownership range!\n");
    TEST_EXIT(b == meshDistributor->getRstart() * nComponents + nRankRows)
      ("Wrong matrix ownership range!\n");
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#endif

    // === Transfer values from DOF matrices to the PETSc matrix. === 

    for (int i = 0; i < nComponents; i++)
      for (int j = 0; j < nComponents; j++)
	if ((*mat)[i][j])
	  setDofMatrix((*mat)[i][j], nComponents, i, j);

    INFO(info, 8)("Fill petsc matrix 2 needed %.5f seconds\n", TIME_USED(first, clock()));

    MatAssemblyBegin(petscMatrix, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(petscMatrix, MAT_FINAL_ASSEMBLY);

    // === Transfer values from DOF vector to the PETSc vector. === 

    for (int i = 0; i < nComponents; i++)
      setDofVector(petscRhsVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscRhsVec);
    VecAssemblyEnd(petscRhsVec);

    INFO(info, 8)("Fill petsc matrix needed %.5f seconds\n", TIME_USED(first, clock()));
  }


  void GlobalMatrixSolver::solvePetscMatrix(SystemVector &vec)
  {
    FUNCNAME("GlobalMatrixSolver::solvePetscMatrix()");

#if 0
    // Set old solution to be initiual guess for petsc solver.
    for (int i = 0; i < nComponents; i++)
      setDofVector(petscSolVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscSolVec);
    VecAssemblyEnd(petscSolVec);
#endif

    // === Init Petsc solver. ===

    KSP solver;
    KSPCreate(PETSC_COMM_WORLD, &solver);
    KSPSetOperators(solver, petscMatrix, petscMatrix, SAME_NONZERO_PATTERN); 
    KSPSetTolerances(solver, 0.0, 1e-8, PETSC_DEFAULT, PETSC_DEFAULT);
    KSPSetType(solver, KSPBCGS);
    KSPMonitorSet(solver, myKSPMonitor, PETSC_NULL, 0);
    KSPSetFromOptions(solver);
    // Do not delete the solution vector, use it for the initial guess.
    //    KSPSetInitialGuessNonzero(solver, PETSC_TRUE);


    // === Run Petsc. ===

    KSPSolve(solver, petscRhsVec, petscSolVec);

    // === Transfere values from Petsc's solution vectors to the dof vectors.
    PetscScalar *vecPointer;
    VecGetArray(petscSolVec, &vecPointer);

486
    int nRankDofs = meshDistributor->getNumberRankDofs();
487
488
489
    for (int i = 0; i < nComponents; i++) {
      DOFVector<double> *dofvec = vec.getDOFVector(i);
      for (int j = 0; j < nRankDofs; j++)
490
491
	(*dofvec)[meshDistributor->mapLocalToDofIndex(j)] = 
	  vecPointer[j * nComponents + i];      
492
493
494
495
496
497
498
    }

    VecRestoreArray(petscSolVec, &vecPointer);


    // === Synchronize dofs at common dofs, i.e., dofs that correspond to more ===
    // === than one partition.                                                 ===
499
    meshDistributor->synchVector(vec);
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524


    // === Print information about solution process. ===

    int iterations = 0;
    KSPGetIterationNumber(solver, &iterations);
    MSG("  Number of iterations: %d\n", iterations);
    
    double norm = 0.0;
    MatMult(petscMatrix, petscSolVec, petscTmpVec);
    VecAXPY(petscTmpVec, -1.0, petscRhsVec);
    VecNorm(petscTmpVec, NORM_2, &norm);
    MSG("  Residual norm: %e\n", norm);


    // === Destroy Petsc's variables. ===

    MatDestroy(petscMatrix);
    VecDestroy(petscRhsVec);
    VecDestroy(petscSolVec);
    VecDestroy(petscTmpVec);
    KSPDestroy(solver);
  }

}