Assembler.cc 47.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include "Assembler.h"
#include "Operator.h"
#include "Element.h"
#include "QPsiPhi.h"
#include "ElementMatrix.h"
#include "ElementVector.h"
#include "DOFVector.h"
#include <vector>
#include <algorithm>

namespace AMDiS {

  ::std::vector<SubAssembler*> ZeroOrderAssembler::optimizedSubAssemblers;
  ::std::vector<SubAssembler*> FirstOrderAssembler::optimizedSubAssemblersGrdPhi;
  ::std::vector<SubAssembler*> FirstOrderAssembler::optimizedSubAssemblersGrdPsi;
  ::std::vector<SubAssembler*> SecondOrderAssembler::optimizedSubAssemblers;
  
  ::std::vector<SubAssembler*> ZeroOrderAssembler::standardSubAssemblers;
  ::std::vector<SubAssembler*> FirstOrderAssembler::standardSubAssemblersGrdPhi;
  ::std::vector<SubAssembler*> FirstOrderAssembler::standardSubAssemblersGrdPsi;
  ::std::vector<SubAssembler*> SecondOrderAssembler::standardSubAssemblers;

  SubAssembler::SubAssembler(Operator *op,
			     Assembler *assembler,
			     Quadrature *quadrat,
			     int order, 
			     bool optimized,
			     FirstOrderType type) 
    : nRow(0),
      nCol(0),
      coordsAtQPs(NULL),
      quadrature(quadrat),
      psiFast(NULL),
      phiFast(NULL),
      owner(assembler),
      symmetric(true),
      opt(optimized),
      firstCall(true)
  {
    const BasisFunction *psi = assembler->rowFESpace->getBasisFcts();
    const BasisFunction *phi = assembler->colFESpace->getBasisFcts();

    nRow = psi->getNumber();
    nCol = phi->getNumber();

46
    switch (order) {
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    case 0:
      terms = op->zeroOrder;
      break;
    case 1:
      if(type == GRD_PHI)
	terms = op->firstOrderGrdPhi;
      else 
	terms = op->firstOrderGrdPsi;
      break;
    case 2:
      terms = op->secondOrder;
      break;
    }

    // check if all terms are symmetric
    symmetric = true;
63
64
    for (int i=0; i < static_cast<int>(terms.size()); i++) {
      if (!(terms[i])->isSymmetric()) {
65
66
67
68
69
70
71
72
73
74
75
76
	symmetric = false;
	break;
      }
    }  

    dim = assembler->rowFESpace->getMesh()->getDim();
  }

  FastQuadrature *SubAssembler::updateFastQuadrature(FastQuadrature *quadFast,
						     const BasisFunction *psi,
						     Flag updateFlag)
  {
77
78
79
80
    if (!quadFast) {
      quadFast = FastQuadrature::provideFastQuadrature(psi,
						       *quadrature,
						       updateFlag);
81
    } else {
82
      if (!quadFast->initialized(updateFlag))
83
84
85
86
87
88
89
90
91
92
93
94
95
96
	quadFast->init(updateFlag);
    }

    return quadFast;
  }

  void SubAssembler::initElement(const ElInfo* elInfo,
				 Quadrature *quad)
  {
    // set corrdsAtQPs invalid
    coordsValid = false;

    // set values at QPs invalid
    ::std::map<const DOFVectorBase<double>*, ValuesAtQPs*>::iterator it1;
97
    for (it1 = valuesAtQPs.begin(); it1 != valuesAtQPs.end(); ++it1) {
98
99
100
101
102
      ((*it1).second)->valid = false;
    }

    // set gradients at QPs invalid
    ::std::map<const DOFVectorBase<double>*, GradientsAtQPs*>::iterator it2;
103
    for (it2 = gradientsAtQPs.begin(); it2 != gradientsAtQPs.end(); ++it2) {
104
105
106
107
108
      ((*it2).second)->valid = false;
    }

    // calls initElement of each term
    ::std::vector<OperatorTerm*>::iterator it;
109
    for (it = terms.begin(); it != terms.end(); ++it) {
110
111
112
113
114
115
116
117
118
119
120
121
      (*it)->initElement(elInfo, this, quad);
    }
  }

  WorldVector<double>* SubAssembler::getCoordsAtQPs(const ElInfo* elInfo,
						    Quadrature *quad)
  {
    Quadrature *localQuad = quad ? quad : quadrature;
  
    const int numPoints = localQuad->getNumPoints();

    // already calculated for this element ?
122
    if (coordsValid) {
123
124
125
126
      return coordsAtQPs;
    }
   
    // not yet calcualted !
127
128
    if (coordsAtQPs) 
      DELETE [] coordsAtQPs;
129
130
131
132
133
134
    // allocate memory
    coordsAtQPs = NEW WorldVector<double>[numPoints];

    // set new values
    WorldVector<double>* k = NULL;
    int l;
135
    for (k = &(coordsAtQPs[0]), l = 0; k < &(coordsAtQPs[numPoints]); ++k, ++l) {
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      elInfo->coordToWorld(localQuad->getLambda(l), k);
    }

    // mark values as valid
    coordsValid = true;

    return coordsAtQPs;
  }

  double* SubAssembler::getVectorAtQPs(DOFVectorBase<double>* dv, 
				       const ElInfo* elInfo,
				       Quadrature *quad)
  {
    FUNCNAME("SubAssembler::getVectorAtQPs()");

    const DOFVectorBase<double>* vec = dv ? dv : owner->operat->getUhOld();

    TEST_EXIT(vec)("no dof vector!\n");

155
    if (valuesAtQPs[vec] && valuesAtQPs[vec]->valid) 
156
157
158
159
      return valuesAtQPs[vec]->values.getValArray();

    Quadrature *localQuad = quad ? quad : quadrature;

160
    if (!valuesAtQPs[vec]) {
161
162
163
164
165
166
167
168
169
170
      valuesAtQPs[vec] = new ValuesAtQPs;
    }
    valuesAtQPs[vec]->values.resize(localQuad->getNumPoints());

    double *values = valuesAtQPs[vec]->values.getValArray();

    bool sameFESpaces = 
      (vec->getFESpace() == owner->rowFESpace) || 
      (vec->getFESpace() == owner->colFESpace);

171
    if (opt && !quad && sameFESpaces) {
172
173
      const BasisFunction *psi = owner->rowFESpace->getBasisFcts();
      const BasisFunction *phi = owner->colFESpace->getBasisFcts();
174
      if (vec->getFESpace()->getBasisFcts() == psi) {
175
176
177
178
179
180
181
182
183
184
185
186
	psiFast = updateFastQuadrature(psiFast, psi, INIT_PHI);
      } else if(vec->getFESpace()->getBasisFcts() == phi) {
	phiFast = updateFastQuadrature(phiFast, phi, INIT_PHI);
      }
    }

    // calculate new values
    const BasisFunction *basFcts = vec->getFESpace()->getBasisFcts();

    //double* uhLoc = GET_MEMORY(double, basFcts->getNumber());
    //vec->getLocalVector(elInfo->getElement(), uhLoc);

187
188
    if (opt && !quad && sameFESpaces) {
      if (psiFast->getBasisFunctions() == basFcts) {
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
	//psiFast->uhAtQp(uhLoc, values);
	vec->getVecAtQPs(elInfo, NULL, psiFast, values);
      } else if(phiFast->getBasisFunctions() == basFcts) {
	//phiFast->uhAtQp(uhLoc, values);
	vec->getVecAtQPs(elInfo, NULL, phiFast, values);
      } else {
	vec->getVecAtQPs(elInfo, localQuad, NULL, values);
      }
    } else {
      //localQuad->uhAtQp(basFcts, uhLoc, values);
      vec->getVecAtQPs(elInfo, localQuad, NULL, values);
    }

    //FREE_MEMORY(uhLoc, double, basFcts->getNumber());
    
    valuesAtQPs[vec]->valid = true;

    // return values
    return values;
  }

  WorldVector<double>* SubAssembler::getGradientsAtQPs(DOFVectorBase<double>* dv, 
						       const ElInfo* elInfo,
						       Quadrature *quad)
  {
    FUNCNAME("SubAssembler::getGradientsAtQPs()");

    const DOFVectorBase<double>* vec = dv ? dv : owner->operat->getUhOld();

    TEST_EXIT(vec)("no dof vector!\n");

220
    if (gradientsAtQPs[vec] && gradientsAtQPs[vec]->valid) 
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
      return gradientsAtQPs[vec]->values.getValArray();

    Quadrature *localQuad = quad ? quad : quadrature;

    if(!gradientsAtQPs[vec]) {
      gradientsAtQPs[vec] = new GradientsAtQPs;
    } 
    gradientsAtQPs[vec]->values.resize(localQuad->getNumPoints());

    WorldVector<double> *values = gradientsAtQPs[vec]->values.getValArray();

    const BasisFunction *psi = owner->rowFESpace->getBasisFcts();
    const BasisFunction *phi = owner->colFESpace->getBasisFcts();

    bool sameFESpaces = 
      (vec->getFESpace() == owner->rowFESpace) || 
      (vec->getFESpace() == owner->colFESpace);

239
240
    if (opt && !quad && sameFESpaces) {
      if (vec->getFESpace()->getBasisFcts() == psi) {
241
242
243
244
245
246
247
248
249
	psiFast = updateFastQuadrature(psiFast, psi, INIT_GRD_PHI);
      } else if(vec->getFESpace()->getBasisFcts() == phi) {
	phiFast = updateFastQuadrature(phiFast, phi, INIT_GRD_PHI);
      }
    }
  
    // calculate new values
    const BasisFunction *basFcts = vec->getFESpace()->getBasisFcts();

250
    if (opt && !quad && sameFESpaces) {
251
252
253
254
255
256
257
258
      if(psiFast->getBasisFunctions() == basFcts) {
	vec->getGrdAtQPs(elInfo, NULL, psiFast, values);
      } else {
	vec->getGrdAtQPs(elInfo, NULL, phiFast, values);
      }
    } else {
      vec->getGrdAtQPs(elInfo, localQuad, NULL, values);
    }
259
   
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    gradientsAtQPs[vec]->valid = true;

    return values;
  }

  ZeroOrderAssembler::ZeroOrderAssembler(Operator *op,
					 Assembler *assembler,
					 Quadrature *quad,
					 bool optimized)
    : SubAssembler(op, assembler, quad, 0, optimized)
  {}

  FirstOrderAssembler::FirstOrderAssembler(Operator *op,
					   Assembler *assembler,
					   Quadrature *quad,
					   bool optimized,
					   FirstOrderType type)
    : SubAssembler(op, assembler, quad, 1, optimized, type)
  {}

  SecondOrderAssembler::SecondOrderAssembler(Operator *op,
					     Assembler *assembler,
					     Quadrature *quad,
					     bool optimized)
    : SubAssembler(op, assembler, quad, 2, optimized)
  {}

  ZeroOrderAssembler* 
  ZeroOrderAssembler::getSubAssembler(Operator* op,
				      Assembler *assembler,
				      Quadrature *quad,
				      bool optimized)
  {
    // check if a assembler is needed at all
294
    if (op->zeroOrder.size() == 0) {
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
      return NULL;
    }

    ZeroOrderAssembler *newAssembler;

    ::std::vector<SubAssembler*> *subAssemblers =
	optimized ?
	&optimizedSubAssemblers :
    &standardSubAssemblers;

    ::std::vector<OperatorTerm*> opTerms  = op->zeroOrder;

    sort(opTerms.begin(), opTerms.end());

    // check if a new assembler is needed
310
311
    if (quad) {
      for (int i = 0; i < static_cast<int>( subAssemblers->size()); i++) {
312
313
314
315
	::std::vector<OperatorTerm*> assTerms = *((*subAssemblers)[i]->getTerms());

	sort(assTerms.begin(), assTerms.end());

316
317
318
319
320
	if ((opTerms == assTerms) && 
	    ((*subAssemblers)[i]->getQuadrature() == quad)) {
	
	  return dynamic_cast<ZeroOrderAssembler*>((*subAssemblers)[i]);
	}
321
322
323
324
325
      }
    }
  
    // check if all terms are pw_const
    bool pwConst = true;
326
327
    for (int i = 0; i < static_cast<int>( op->zeroOrder.size()); i++) {
      if (!op->zeroOrder[i]->isPWConst()) {
328
329
330
331
332
333
	pwConst = false;
	break;
      }
    }  

    // create new assembler
334
    if (!optimized) {
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      newAssembler = NEW Stand0(op, assembler, quad);
    } else {
      if(pwConst) {
	newAssembler = NEW Pre0(op, assembler, quad);
      } else {
	newAssembler = NEW Quad0(op, assembler, quad);
      }
    }

    subAssemblers->push_back(newAssembler);
    return newAssembler;
  }

  FirstOrderAssembler* 
  FirstOrderAssembler::getSubAssembler(Operator* op,
				       Assembler *assembler,
				       Quadrature *quad,
				       FirstOrderType type,
				       bool optimized)
  {
    ::std::vector<SubAssembler*> *subAssemblers =
	optimized ?
	(type == GRD_PSI ? 
	 &optimizedSubAssemblersGrdPsi : 
	 &optimizedSubAssemblersGrdPhi) :
    (type == GRD_PSI ? 
     &standardSubAssemblersGrdPsi :
     &standardSubAssemblersGrdPhi);

    ::std::vector<OperatorTerm*> opTerms 
	= (type == GRD_PSI) ? op->firstOrderGrdPsi : op->firstOrderGrdPhi;

    // check if a assembler is needed at all
368
    if (opTerms.size() == 0) {
369
370
371
372
373
374
375
376
      return NULL;
    }

    sort(opTerms.begin(), opTerms.end());

    FirstOrderAssembler *newAssembler;

    // check if a new assembler is needed
377
    for (int i = 0; i < static_cast<int>( subAssemblers->size()); i++) {
378
379
380

      ::std::vector<OperatorTerm*> assTerms = *((*subAssemblers)[i]->getTerms());
    
381
      sort(assTerms.begin(), assTerms.end());   
382

383
384
      if ((opTerms == assTerms) && 
	  ((*subAssemblers)[i]->getQuadrature() == quad)) {
385

386
387
	return dynamic_cast<FirstOrderAssembler*>((*subAssemblers)[i]);
      }
388
389
390
391
    }

    // check if all terms are pw_const
    bool pwConst = true;
392
393
    for (int i = 0; i < static_cast<int>( opTerms.size()); i++) {
      if (!(opTerms[i])->isPWConst()) {
394
395
396
397
398
399
	pwConst = false;
	break;
      }
    }  

    // create new assembler
400
    if (!optimized) {
401
402
403
404
405
      newAssembler = 
	(type == GRD_PSI) ?
	dynamic_cast<FirstOrderAssembler*>(NEW Stand10(op, assembler, quad)) :
	dynamic_cast<FirstOrderAssembler*>(NEW Stand01(op, assembler, quad));    
    } else {
406
      if (pwConst) {
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
	newAssembler = 
	  (type == GRD_PSI) ?
	  dynamic_cast<FirstOrderAssembler*>(NEW Pre10(op, assembler, quad)) :
	  dynamic_cast<FirstOrderAssembler*>(NEW Pre01(op, assembler, quad));
      } else {
	newAssembler = 
	  (type == GRD_PSI) ?
	  dynamic_cast<FirstOrderAssembler*>( NEW Quad10(op, assembler, quad)) :
	  dynamic_cast<FirstOrderAssembler*>( NEW Quad01(op, assembler, quad));
      }
    }

    subAssemblers->push_back(newAssembler);
    return newAssembler;
  };

  SecondOrderAssembler* 
  SecondOrderAssembler::getSubAssembler(Operator* op,
					Assembler *assembler,
					Quadrature *quad,
					bool optimized)
  {
    // check if a assembler is needed at all
    if(op->secondOrder.size() == 0) {
      return NULL;
    }

    SecondOrderAssembler *newAssembler;

    ::std::vector<SubAssembler*> *subAssemblers =
	optimized ?
	&optimizedSubAssemblers :
    &standardSubAssemblers;

    ::std::vector<OperatorTerm*> opTerms  = op->zeroOrder;

    sort(opTerms.begin(), opTerms.end());

    // check if a new assembler is needed
446
    for (int i = 0; i < static_cast<int>( subAssemblers->size()); i++) {
447
448
449
450
      ::std::vector<OperatorTerm*> assTerms = *((*subAssemblers)[i]->getTerms());
    
      sort(assTerms.begin(), assTerms.end());

451
452
453
454
455
      if ((opTerms == assTerms) && 
	  ((*subAssemblers)[i]->getQuadrature() == quad)) {
	
	return dynamic_cast<SecondOrderAssembler*>((*subAssemblers)[i]);
      }
456
457
458
459
    }

    // check if all terms are pw_const
    bool pwConst = true;
460
461
    for (int i = 0; i < static_cast<int>( op->secondOrder.size()); i++) {
      if (!op->secondOrder[i]->isPWConst()) {
462
463
464
465
466
467
	pwConst = false;
	break;
      }
    }  

    // create new assembler
468
    if (!optimized) {
469
470
      newAssembler = NEW Stand2(op, assembler, quad);
    } else {
471
      if (pwConst) {
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
	newAssembler = NEW Pre2(op, assembler, quad);
      } else {
	newAssembler = NEW Quad2(op, assembler, quad);
      }
    }

    subAssemblers->push_back(newAssembler);
    return newAssembler;
  }

  Stand0::Stand0(Operator *op, Assembler *assembler, Quadrature *quad)
    : ZeroOrderAssembler(op, assembler, quad, false)
  {
  }

  void Stand0::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    double val;

    const BasisFunction *psi = owner->getRowFESpace()->getBasisFcts();
    const BasisFunction *phi = owner->getColFESpace()->getBasisFcts();

    double  psival;
    double *phival = GET_MEMORY(double, nCol);

    int numPoints = quadrature->getNumPoints();

    double *c = GET_MEMORY(double, numPoints);
Thomas Witkowski's avatar
Thomas Witkowski committed
500

501
    for (int iq = 0; iq < numPoints; iq++) {
502
503
504
505
      c[iq] = 0.0;
    }

    ::std::vector<OperatorTerm*>::iterator termIt;
506
    for (termIt = terms.begin(); termIt != terms.end(); ++termIt) {
507
508
509
510
      (static_cast<ZeroOrderTerm*>((*termIt)))->getC(elInfo, numPoints, c);
    }
      
    if (symmetric) {
511
      for (int iq = 0; iq < numPoints; iq++) {
512
513
514
	c[iq] *= elInfo->getDet();

	// calculate phi at QPs only once!
515
	for (int i = 0; i < nCol; i++) {
516
517
518
	  phival[i] = (*(phi->getPhi(i)))(quadrature->getLambda(iq));
	}

519
	for (int i = 0; i < nRow; i++) {
520
521
	  psival = (*(psi->getPhi(i)))(quadrature->getLambda(iq));
	  (*mat)[i][i] += quadrature->getWeight(iq)*c[iq]*psival*phival[i];
522
	  for (int j = i + 1; j < nCol; j++) {
523
524
525
526
527
528
	    val = quadrature->getWeight(iq)*c[iq]*psival*phival[j];
	    (*mat)[i][j] += val;
	    (*mat)[j][i] += val;
	  }
	}
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
529
    } else {      //  non symmetric assembling 
530
      for (int iq = 0; iq < numPoints; iq++) {
531
532
533
	c[iq] *= elInfo->getDet();

	// calculate phi at QPs only once!
534
	for (int i = 0; i < nCol; i++) {
535
536
537
	  phival[i] = (*(phi->getPhi(i)))(quadrature->getLambda(iq));
	}

538
	for (int i = 0; i < nRow; i++) {
539
	  psival = (*(psi->getPhi(i)))(quadrature->getLambda(iq));
540
	  for (int j = 0; j < nCol; j++) {
541
542
543
544
545
	    (*mat)[i][j] += quadrature->getWeight(iq)*c[iq]*psival*phival[j];
	  }
	}
      }
    }
Thomas Witkowski's avatar
Thomas Witkowski committed
546

547
548
549
550
551
552
553
554
555
    FREE_MEMORY(c, double, numPoints);
    FREE_MEMORY(phival, double, nCol);
  }

  void Stand0::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
    int numPoints = quadrature->getNumPoints();

    double *c = GET_MEMORY(double, numPoints);
556
    for (int iq = 0; iq < numPoints; iq++) {
557
558
559
560
      c[iq] = 0.0;
    }

    ::std::vector<OperatorTerm*>::iterator termIt;
561
    for (termIt = terms.begin(); termIt != terms.end(); ++termIt) {
562
563
564
      (static_cast<ZeroOrderTerm*>((*termIt)))->getC(elInfo, numPoints, c);
    }

565
    for (int iq = 0; iq < numPoints; iq++) {
566
567
      c[iq] *= elInfo->getDet();

568
569
      for (int i = 0; i < nRow; i++) {
	double psi = (*(owner->getRowFESpace()->getBasisFcts()->getPhi(i)))
570
	  (quadrature->getLambda(iq));
571
	(*vec)[i] += quadrature->getWeight(iq) * c[iq] * psi;
572
573
574
575
576
577
578
579
580
581
582
583
584
585
      }
    }
    FREE_MEMORY(c, double, numPoints);
  }

  Quad0::Quad0(Operator *op, Assembler *assembler, Quadrature *quad)
    : ZeroOrderAssembler(op, assembler, quad, true)
  {
  }

  void Quad0::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    const double *psi, *phi;

586
    if (firstCall) {
587
588
589
590
591
592
593
594
595
596
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_PHI);
      firstCall = false;
    }

    int numPoints = quadrature->getNumPoints();

    double *c = GET_MEMORY(double, numPoints);
597
    for (int iq = 0; iq < numPoints; iq++) {
598
599
600
601
      c[iq] = 0.0;
    }

    ::std::vector<OperatorTerm*>::iterator termIt;
602
    for (termIt = terms.begin(); termIt != terms.end(); ++termIt) {
603
604
605
606
      (static_cast<ZeroOrderTerm*>((*termIt)))->getC(elInfo, numPoints, c);
    }

    if (symmetric) {
607
      for (int iq = 0; iq < numPoints; iq++) {
608
609
610
611
	c[iq] *= elInfo->getDet();

	psi = psiFast->getPhi(iq);
	phi = phiFast->getPhi(iq);
612
613
614
615
	for (int i = 0; i < nRow; i++) {
	  (*mat)[i][i] += quadrature->getWeight(iq) * c[iq] * psi[i] * phi[i];
	  for (int j = i + 1; j < nCol; j++) {
	    double val = quadrature->getWeight(iq) * c[iq] * psi[i] * phi[j];
616
617
618
619
620
621
	    (*mat)[i][j] += val;
	    (*mat)[j][i] += val;
	  }
	}
      }
    } else {      /*  non symmetric assembling   */
622
      for (int iq = 0; iq < numPoints; iq++) {
623
624
625
626
	c[iq] *= elInfo->getDet();

	psi = psiFast->getPhi(iq);
	phi = phiFast->getPhi(iq);
627
628
629
	for (int i = 0; i < nRow; i++) {
	  for (int j = 0; j < nCol; j++) {
	    (*mat)[i][j] += quadrature->getWeight(iq) * c[iq] * psi[i] * phi[j];
630
631
632
633
634
635
636
637
638
	  }
	}
      }
    }
    FREE_MEMORY(c, double, numPoints);
  }

  void Quad0::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
639
    if (firstCall) {
640
641
642
643
644
645
646
647
648
649
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_PHI);
      firstCall = false;
    }

    int numPoints = quadrature->getNumPoints();

    double *c = GET_MEMORY(double, numPoints);
650
    for (int iq = 0; iq < numPoints; iq++) {
651
652
653
654
      c[iq] = 0.0;
    }

    ::std::vector<OperatorTerm*>::iterator termIt;
655
    for (termIt = terms.begin(); termIt != terms.end(); ++termIt) {
656
657
658
      (static_cast<ZeroOrderTerm*>((*termIt)))->getC(elInfo, numPoints, c);
    }

659
    for (int iq = 0; iq < numPoints; iq++) {
660
661
      c[iq] *= elInfo->getDet();

662
663
664
      const double *psi = psiFast->getPhi(iq);
      for (int i = 0; i < nRow; i++) {
	(*vec)[i] += quadrature->getWeight(iq) * c[iq] * psi[i];
665
666
667
668
669
670
671
672
673
674
675
676
      }
    }
    FREE_MEMORY(c, double, numPoints);
  }

  Pre0::Pre0(Operator *op, Assembler *assembler, Quadrature *quad) 
    : ZeroOrderAssembler(op, assembler, quad, true)
  {
  }

  void Pre0::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
677
    double *c = GET_MEMORY(double, 1);
678

679
    if (firstCall) {
680
681
682
683
684
685
686
687
688
      q00 = Q00PsiPhi::provideQ00PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      q0 = Q0Psi::provideQ0Psi(owner->getRowFESpace()->getBasisFcts(),
			       quadrature);
      firstCall = false;
    }

    c[0] = 0.0;
689
    for (int i = 0; i < static_cast<int>( terms.size()); i++) {
690
691
692
693
694
695
      (static_cast<ZeroOrderTerm*>((terms[i])))->getC(elInfo, 1, c);
    }

    c[0] *= elInfo->getDet();

    if (symmetric) {
696
697
698
699
      for (int i = 0; i < nRow; i++) {
	(*mat)[i][i] += c[0] * q00->getValue(i,i);
	for (int j = i + 1; j < nCol; j++) {
	  double val = c[0] * q00->getValue(i, j);
700
701
702
703
704
	  (*mat)[i][j] += val;
	  (*mat)[j][i] += val;
	}
      }
    } else {
705
706
      for (int i = 0; i < nRow; i++)
	for (int j = 0; j < nCol; j++)
707
708
709
710
711
712
713
714
715
716
	  (*mat)[i][j] += c[0]*q00->getValue(i,j);
    }

    FREE_MEMORY(c, double, 1);
  }

  void Pre0::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
    double *c = GET_MEMORY(double, 1);;

717
    if (firstCall) {
718
719
720
721
722
723
724
725
726
727
728
      q00 = Q00PsiPhi::provideQ00PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      q0 = Q0Psi::provideQ0Psi(owner->getRowFESpace()->getBasisFcts(),
			       quadrature);
      firstCall = false;
    }

    ::std::vector<OperatorTerm*>::iterator termIt;

    c[0] = 0.0;
729
    for (termIt = terms.begin(); termIt != terms.end(); ++termIt) {
730
731
732
733
734
      (static_cast<ZeroOrderTerm*>( *termIt))->getC(elInfo, 1, c);
    }

    c[0] *= elInfo->getDet();

735
    for (int i = 0; i < nRow; i++)
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
      (*vec)[i] += c[0] * q0->getValue(i);

    FREE_MEMORY(c, double, 1);
  }

  Stand10::Stand10(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, false, GRD_PSI)
  {}


  void Stand10::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    DimVec<double> grdPsi(dim, NO_INIT);
    double *phival = GET_MEMORY(double, nCol);

    const BasisFunction *psi = owner->getRowFESpace()->getBasisFcts();
    const BasisFunction *phi = owner->getColFESpace()->getBasisFcts();

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);
757
    for (int iq = 0; iq < numPoints; iq++) {
758
759
      Lb[iq].set(0.0);
    }
760
    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
761
762
763
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
764
    for (int iq = 0; iq < numPoints; iq++) {
765
766
      Lb[iq] *= elInfo->getDet();

767
      for (int i = 0; i < nCol; i++) {
768
769
770
	phival[i] = (*(phi->getPhi(i)))(quadrature->getLambda(iq));
      }

771
      for (int i = 0; i < nRow; i++) {
772
	grdPsi = (*(psi->getGrdPhi(i)))(quadrature->getLambda(iq));
773
774
	for (int j = 0; j < nCol; j++) {
	  (*mat)[i][j] += quadrature->getWeight(iq) * (Lb[iq] * grdPsi) * phival[j];
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
	}
      }
    }
    FREE_MEMORY(phival, double, nCol);
  }


  Quad10::Quad10(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, true, GRD_PSI)
  {
  }


  void Quad10::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    VectorOfFixVecs<DimVec<double> > *grdPsi;
    const double *phi;

793
    if (firstCall) {
794
795
796
797
798
799
800
801
802
803
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_GRD_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_PHI);
      firstCall = false;
    }

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);
804
    for (int iq = 0; iq < numPoints; iq++) {
805
806
      Lb[iq].set(0.0);
    }
807
808

    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
809
810
811
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
812
    for (int iq = 0; iq < numPoints; iq++) {
813
814
815
816
817
      Lb[iq] *= elInfo->getDet();

      phi    = phiFast->getPhi(iq);
      grdPsi = psiFast->getGradient(iq);

818
819
820
      for (int i = 0; i < nRow; i++) {
	for (int j = 0; j < nCol; j++)
	  (*mat)[i][j] += quadrature->getWeight(iq) * (Lb[iq] * (*grdPsi)[i]) * phi[j];
821
822
823
824
825
826
827
828
829
830
      }
    }
  }


  Pre10::Pre10(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, true, GRD_PSI)
  {
  }

831

832
833
834
835
836
837
838
  void Pre10::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    VectorOfFixVecs<DimVec<double> > Lb(dim,1,NO_INIT);
    const int *k;
    const double *values;
    double val;

839
    if (firstCall) {
840
841
842
843
844
845
846
847
848
849
850
      q10 = Q10PsiPhi::provideQ10PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      q1 = Q1Psi::provideQ1Psi(owner->getRowFESpace()->getBasisFcts(),
			       quadrature);
      firstCall = false;
    }

    const int **nEntries = q10->getNumberEntries();

    Lb[0].set(0.0);
851
    for (int i = 0; i < static_cast<int>( terms.size()); i++) {
852
853
854
855
856
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, 1, Lb);
    }

    Lb[0] *= elInfo->getDet();

857
858
859
    for (int i = 0; i < nRow; i++) {
      for (int j = 0; j < nCol; j++) {
	k = q10->getKVec(i, j);
860
	values = q10->getValVec(i, j);
861
	int m;
862
863
864
865
866
867
868
869
870
871
872
873
	for (val = m = 0; m < nEntries[i][j]; m++)
	  val += values[m]*Lb[0][k[m]];
	(*mat)[i][j] += val;
      }
    }
  }


  Stand01::Stand01(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, false, GRD_PHI)
  {}

874

875
876
877
878
879
880
881
882
883
884
885
886
887
  void Stand01::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    VectorOfFixVecs<DimVec<double> > grdPhi(dim, nCol, NO_INIT);
    double psival;

    const BasisFunction *psi = owner->getRowFESpace()->getBasisFcts();
    const BasisFunction *phi = owner->getColFESpace()->getBasisFcts();

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);
    //  DimVec<double> *Lb = NEW DimVec<double>[numPoints](dim, NO_INIT);

888
    for (int iq = 0; iq < numPoints; iq++) {
889
890
      Lb[iq].set(0.0);
    }
891
    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
892
893
894
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
895
    for (int iq = 0; iq < numPoints; iq++) {
896
897
      Lb[iq] *= elInfo->getDet();

898
      for (int i = 0; i < nCol; i++) {
899
900
901
	grdPhi[i] = (*(phi->getGrdPhi(i)))(quadrature->getLambda(iq));
      }

902
      for (int i = 0; i < nRow; i++) {
903
	psival = (*(psi->getPhi(i)))(quadrature->getLambda(iq));
904
905
	for (int j = 0; j < nCol; j++)
	  (*mat)[i][j] += quadrature->getWeight(iq) * ((Lb[iq] * psival) * grdPhi[j]);
906
      }
907
    } 
908
909
910
911
912
913
914
915
916
917
918
919
  }

  void Stand10::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
    DimVec<double> grdPsi(dim, NO_INIT);

    const BasisFunction *psi = owner->getRowFESpace()->getBasisFcts();

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);

920
    for (int iq = 0; iq < numPoints; iq++) {
921
922
      Lb[iq].set(0.0);
    }
923
    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
924
925
926
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
927
    for (int iq = 0; iq < numPoints; iq++) {
928
929
      Lb[iq] *= elInfo->getDet();

930
      for (int i = 0; i < nRow; i++) {
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
	grdPsi = (*(psi->getGrdPhi(i)))(quadrature->getLambda(iq));
	(*vec)[i] += quadrature->getWeight(iq) * (Lb[iq] * grdPsi);
      }
    }
  }

  Quad01::Quad01(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, true, GRD_PHI)
  {
  }

  void Quad01::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    VectorOfFixVecs<DimVec<double> > *grdPhi;

946
    if (firstCall) {
947
948
949
950
951
952
953
954
955
956
957
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_GRD_PHI);
      firstCall = false;
    }

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);

958
    for (int iq = 0; iq < numPoints; iq++) {
959
960
      Lb[iq].set(0.0);
    }
961
    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
962
963
964
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
965
    for (int iq = 0; iq < numPoints; iq++) {
966
967
      Lb[iq] *= elInfo->getDet();

968
      const double *psi = psiFast->getPhi(iq);
969
970
      grdPhi = phiFast->getGradient(iq);

971
972
973
      for (int i = 0; i < nRow; i++) {
	for (int j = 0; j < nCol; j++)
	  (*mat)[i][j] += quadrature->getWeight(iq) * (Lb[iq] * (*grdPhi)[j]) * psi[i];
974
975
976
977
978
979
980
981
      }
    }
  }

  void Quad10::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
    VectorOfFixVecs<DimVec<double> > *grdPsi;

982
    if (firstCall) {
983
984
985
986
987
988
989
990
991
992
993
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_GRD_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_PHI);
      firstCall = false;
    }

    int numPoints = quadrature->getNumPoints();

    VectorOfFixVecs<DimVec<double> > Lb(dim,numPoints,NO_INIT);

994
    for (int iq = 0; iq < numPoints; iq++) {
995
996
      Lb[iq].set(0.0);
    }
997
    for (int i = 0; i < static_cast<int>(terms.size()); i++) {
998
999
1000
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, numPoints, Lb);
    }
  
1001
    for (int iq = 0; iq < numPoints; iq++) {
1002
1003
1004
1005
1006

      Lb[iq] *= elInfo->getDet();

      grdPsi = psiFast->getGradient(iq);

1007
      for (int i = 0; i < nRow; i++) {
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
	(*vec)[i] += quadrature->getWeight(iq) * (Lb[iq] * (*grdPsi)[i]);
      }
    }
  }

  Pre01::Pre01(Operator *op, Assembler *assembler, Quadrature *quad) 
    : FirstOrderAssembler(op, assembler, quad, true, GRD_PHI)
  {
  }

  void Pre01::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    VectorOfFixVecs<DimVec<double> > Lb(dim,1,NO_INIT);

    const int *l;
    const double *values;
    double val;

1026
    if (firstCall) {
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
      q01 = Q01PsiPhi::provideQ01PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      q1 = Q1Psi::provideQ1Psi(owner->getRowFESpace()->getBasisFcts(),
			       quadrature);
      firstCall = false;
    }

    const int **nEntries = q01->getNumberEntries();

    Lb[0].set(0.0);
1038
    for (int i = 0; i < static_cast<int>( terms.size()); i++) {
1039
1040
1041
1042
1043
      (static_cast<FirstOrderTerm*>((terms[i])))->getLb(elInfo, 1, Lb);
    }

    Lb[0] *= elInfo->getDet();

1044
1045
1046
    for (int i = 0; i < nRow; i++) {
      for (int j = 0; j < nCol; j++) {
	l = q01->getLVec(i, j);
1047
	values = q01->getValVec(i, j);
1048
	int m;
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
	for (val = m = 0; m < nEntries[i][j]; m++)
	  val += values[m]*Lb[0][l[m]];
	(*mat)[i][j] += val;
      }
    }
  }

  void Pre10::calculateElementVector(const ElInfo *elInfo, ElementVector *vec)
  {
    VectorOfFixVecs<DimVec<double> > Lb(dim,1,NO_INIT);

    const int *k;
    const double *values;
    int i, m;
    double val;

    if(firstCall) {
      q10 = Q10PsiPhi::provideQ10PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      q1 = Q1Psi::provideQ1Psi(owner->getRowFESpace()->getBasisFcts(),
			       quadrature);
      firstCall = false;
    }

    const int *nEntries = q1->getNumberEntries();

    Lb[0].set(0.0);
    for(i=0; i < static_cast<int>(terms.size()); i++) {
      (static_cast<FirstOrderTerm*>(terms[i]))->getLb(elInfo, 1, Lb);
    }

    Lb[0] *= elInfo->getDet();

    for (i = 0; i < nRow; i++) {
      k      = q1->getKVec(i);
      values = q1->getValVec(i);
      for (val = m = 0; m < nEntries[i]; m++)
	val += values[m]*Lb[0][k[m]];
      (*vec)[i] += val;
    }

    //DELETE [] Lb;
  }

  Pre2::Pre2(Operator *op, Assembler *assembler, Quadrature *quad) 
    : SecondOrderAssembler(op, assembler, quad, true)
  {
    //   q11 = Q11PsiPhi::provideQ11PsiPhi(assembler->getRowFESpace()->getBasisFcts(), 
    // 				    assembler->getColFESpace()->getBasisFcts(), 
    // 				    quadrature);
  }

  void Pre2::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    DimMat<double> **LALt = NEW DimMat<double>*;
    *LALt=NEW DimMat<double>(dim, NO_INIT);
    const int **nEntries;
    const int *k, *l;
    const double *values;
    int          i, j, m;
    double val;

    if(firstCall) {
      q11 = Q11PsiPhi::provideQ11PsiPhi(owner->getRowFESpace()->getBasisFcts(), 
					owner->getColFESpace()->getBasisFcts(), 
					quadrature);
      firstCall = false;
    }

    LALt[0]->set(0.0);

    for(i=0; i < static_cast<int>( terms.size()); i++) {
      (static_cast<SecondOrderTerm*>(terms[i]))->getLALt(elInfo, 1, LALt);
    }

    (*LALt[0]) *= elInfo->getDet();

    nEntries = q11->getNumberEntries();

    if (symmetric) {
      for (i = 0; i < nRow; i++) {
	k      = q11->getKVec(i, i);
	l      = q11->getLVec(i, i);
	values = q11->getValVec(i, i);
	for (val = m = 0; m < nEntries[i][i]; m++)
	  val += values[m]*(*LALt[0])[k[m]][l[m]];
	(*mat)[i][i] += val;
	for (j = i+1; j < nCol; j++) {
	  k      = q11->getKVec(i, j);
	  l      = q11->getLVec(i, j);
	  values = q11->getValVec(i, j);
	  for (val = m = 0; m < nEntries[i][j]; m++)
	    val += values[m]*(*LALt[0])[k[m]][l[m]];
	  (*mat)[i][j] += val;
	  (*mat)[j][i] += val;
	}
      }
    }
    else {  /*  A not symmetric or psi != phi        */
      for (i = 0; i < nRow; i++) {
	for (j = 0; j < nCol; j++) {
	  k      = q11->getKVec(i, j);
	  l      = q11->getLVec(i, j);
	  values = q11->getValVec(i, j);
	  for (val = m = 0; m < nEntries[i][j]; m++)
	    val += values[m]*(*LALt[0])[k[m]][l[m]];
	  (*mat)[i][j] += val;
	}
      }
    }

    DELETE *LALt;
    DELETE LALt;
  }

  // void Pre2::calculateElementVector(const ElInfo *elInfo, double *vec)
  // {
  //   FUNCNAME("Pre2::calculateElementVector");
  //   ERROR_EXIT("should not be called\n");
  // }

  // void Pre2::calculateElementVector(const ElInfo *elInfo, double *vec)
  // {  
  //   DimMat<double>  LALt(dim, NO_INIT);
  //   const int *nEntries;
  //   const int *k, *l;
  //   const double *values;
  //   int          i, m;
  //   double val;

  //   LALt.set(0.0);

  //   for(i=0; i < static_cast<int>( terms->size()); i++) {
  //     (static_cast<SecondOrderTerm*>((*terms)[i])->eval(elInfo, 0, &LALt);
  //   }

  //   nEntries = q2->getNumberEntries();

  //   for (i = 0; i < nRow; i++) {
  //     k      = q2->getKVec(i);
  //     l      = q2->getLVec(i);
  //     values = q2->getValVec(i);
  //     for (val = m = 0; m < nEntries[i]; m++)
  //       val += values[m]*LALt[k[m]][l[m]];
  //     vec[i] += val;
  //   }
  // }

  Quad2::Quad2(Operator *op, Assembler *assembler, Quadrature *quad) 
    : SecondOrderAssembler(op, assembler, quad, true)
  {
    //   if(!psiFast) {
    //     psiFast = FastQuadrature::provideFastQuadrature(
    //       assembler->getRowFESpace()->getBasisFcts(), 
    //       *quadrature,
    //       INIT_GRD_PHI);
    //   } else {
    //     psiFast->init(INIT_GRD_PHI);
    //   }
    //   if(!phiFast) {
    //     phiFast = FastQuadrature::provideFastQuadrature(
    //       assembler->getColFESpace()->getBasisFcts(), 
    //       *quadrature,
    //       INIT_PHI);
    //   } else {
    //     phiFast->init(INIT_GRD_PHI);
    //   }
  }

  void Quad2::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    double val;
    VectorOfFixVecs<DimVec<double> > *grdPsi, *grdPhi;
    int iq, i, j;

    if(firstCall) {
      const BasisFunction *basFcts = owner->getRowFESpace()->getBasisFcts();
      psiFast = updateFastQuadrature(psiFast, basFcts, INIT_GRD_PHI);
      basFcts = owner->getColFESpace()->getBasisFcts();
      phiFast = updateFastQuadrature(phiFast, basFcts, INIT_GRD_PHI);
      firstCall = false;
    }

    int nPoints = quadrature->getNumPoints();

    DimMat<double> **LALt = NEW DimMat<double>*[nPoints];
    for(i=0;i<nPoints;i++) LALt[i]=NEW DimMat<double>(dim, NO_INIT);
    for (iq = 0; iq < nPoints; iq++) {
      LALt[iq]->set(0.0);
    }
    for(i=0; i < static_cast<int>(terms.size()); i++) {
      (static_cast<SecondOrderTerm*>(terms[i]))->getLALt(elInfo, nPoints, LALt);
    }

    if (symmetric) {
      for (iq = 0; iq < nPoints; iq++) {
	(*LALt[iq]) *= elInfo->getDet();

	grdPsi = psiFast->getGradient(iq);
	grdPhi = phiFast->getGradient(iq);

	for (i = 0; i < nRow; i++) {
	  (*mat)[i][i] += quadrature->getWeight(iq) * 
	    ((*grdPsi)[i] * ((*LALt[iq]) * (*grdPhi)[i]));

	  for (j = i+1; j < nCol; j++) {
	    val = quadrature->getWeight(iq) * ((*grdPsi)[i] * ((*LALt[iq]) * (*grdPhi)[j]));
	    (*mat)[i][j] += val;
	    (*mat)[j][i] += val;
	  }
	}
      }
    }
    else {      /*  non symmetric assembling   */
      for (iq = 0; iq < nPoints; iq++) {
	(*LALt[iq]) *= elInfo->getDet();

	grdPsi = psiFast->getGradient(iq);
	grdPhi = phiFast->getGradient(iq);

	for (i = 0; i < nRow; i++) {
	  for (j = 0; j < nCol; j++) {
	    (*mat)[i][j] += quadrature->getWeight(iq) *
	      ((*grdPsi)[i] * ((*LALt[iq]) * (*grdPhi)[j]));
	  }
	}
      }
    }
  
    for(i=0;i<nPoints;i++) DELETE LALt[i];
    DELETE [] LALt; 
  }

  // void Quad2::calculateElementVector(const ElInfo *elInfo, double *vec)
  // {
  //   FUNCNAME("Quad2::calculateElementVector");
  //   ERROR_EXIT("should not be called\n");
  // }

  Stand2::Stand2(Operator *op, Assembler *assembler, Quadrature *quad) 
    : SecondOrderAssembler(op, assembler, quad, false)
  {}

  void Stand2::calculateElementMatrix(const ElInfo *elInfo, ElementMatrix *mat)
  {
    double val;
    DimVec<double> grdPsi(dim, NO_INIT);
    VectorOfFixVecs<DimVec<double> > grdPhi(dim, nCol, NO_INIT);
    int iq, i, j;

    const BasisFunction *psi = owner->getRowFESpace()->getBasisFcts();
    const BasisFunction *phi = owner->getColFESpace()->getBasisFcts();

    int nPoints = quadrature->getNumPoints();

    DimMat<double> **LALt = NEW DimMat<double>*[nPoints];
    for (iq = 0; iq < nPoints; iq++) {
      LALt[iq]=NEW DimMat<double>(dim,NO_INIT);
      LALt[iq]->set(0.0);
    }
    for(i=0; i < static_cast<int>(terms.size()); i++) {
      (static_cast<SecondOrderTerm*>(terms[i]))->getLALt(elInfo, nPoints, LALt);
    }

    if (symmetric) {
      for (iq = 0; iq < nPoints; iq++) {
	(*LALt[iq]) *= elInfo->getDet();

	for(i=0; i < nCol; i++) {
	  grdPhi[i] = (*(phi->getGrdPhi(i)))(quadrature->getLambda(iq));
	}

	for (i = 0; i < nRow; i++) {
	  grdPsi = (*(psi->getGrdPhi(i)))(quadrature->getLambda(iq));
	  (*mat)[i][i] += quadrature->getWeight(iq) * 
	    (grdPsi * ((*LALt[iq]) * grdPhi[i]));

	  for (j = i+1; j < nCol; j++) {
	    val = quadrature->getWeight(iq) * (grdPsi * ((*LALt[iq]) * grdPhi[j]));
	    (*mat)[i][j] += val;
	    (*mat)[j][i] += val;
	  }
	}
      }
    }
    else {      /*  non symmetric assembling   */
      for (iq = 0; iq < nPoints; iq++) {
	(*LALt[iq]) *= elInfo->getDet();

	for(i=0; i < nCol; i++) {
	  grdPhi[i] = (*(phi->getGrdPhi(i)))(quadrature->getLambda(iq));
	}

	for (i = 0; i < nRow; i++) {
	  grdPsi = (*(psi->getGrdPhi(i)))(quadrature->getLambda(iq));
	  for (j = 0; j < nCol; j++) {
	    (*mat)[i][j] += quadrature->getWeight(iq) *
	      (grdPsi * ((*LALt[iq]) * grdPhi[j]));
	  }
	}
      }
    }

    for(iq=0;iq<nPoints;iq++) DELETE LALt[iq];
    DELETE [] LALt;
  }

  // void Stand2::calculateElementVector(const ElInfo *elInfo, double *vec)
  // {
  //   FUNCNAME("Stand2::calculateElementVector");
  //   ERROR_EXIT("should not be called\n");
  // }

  Assembler::Assembler(Operator  *op,
		       const FiniteElemSpace *rowFESpace_,
		       const FiniteElemSpace *colFESpace_) 
    : operat(op),
      rowFESpace(rowFESpace_),
      colFESpace(colFESpace_ ? colFESpace_ : rowFESpace_),
      nRow(rowFESpace->getBasisFcts()->getNumber()),
      nCol(colFESpace->getBasisFcts()->getNumber()),
      remember(true),
      rememberElMat(false),
      rememberElVec(false),
      elementMatrix(NULL),
      elementVector(NULL),
      lastMatEl(NULL),
      lastVecEl(NULL),
      lastTraverseId(-1)
  
  {
    //if(op->uhOld) rememberElMat = true;
  }

  void Assembler::calculateElementMatrix(const ElInfo *elInfo, 
					 ElementMatrix *userMat,
					 double factor)
  {
    FUNCNAME("Assembler::calculateElementMatrix()");

    if (remember && ((factor != 1.0) || (operat->uhOld))) {
      rememberElMat = true;
    }
  
    if (rememberElMat && !elementMatrix)
      elementMatrix = NEW ElementMatrix(nRow, nCol);

    Element *el = elInfo->getElement();

Thomas Witkowski's avatar
Thomas Witkowski committed
1399
    
1400
1401
1402
    checkForNewTraverse();

    checkQuadratures();
Thomas Witkowski's avatar
Thomas Witkowski committed
1403
    
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
    if ((el != lastMatEl && el != lastVecEl) || !operat->isOptimized()) {
      initElement(elInfo);
    }

    if (el != lastMatEl || !operat->isOptimized()) {
      if (rememberElMat) {
	elementMatrix->set(0.0);
      }
      lastMatEl = el;
    } else {
      if (rememberElMat) {
	axpy(factor, *elementMatrix, *userMat);
	return;
      }
    }
  
    ElementMatrix *mat = rememberElMat ? elementMatrix : userMat;

    if (secondOrderAssembler)
      secondOrderAssembler->calculateElementMatrix(elInfo, mat);
    if (firstOrderAssemblerGrdPsi)
      firstOrderAssemblerGrdPsi->calculateElementMatrix(elInfo, mat);
    if (firstOrderAssemblerGrdPhi)
      firstOrderAssemblerGrdPhi->calculateElementMatrix(elInfo, mat);
    if (zeroOrderAssembler)
      zeroOrderAssembler->calculateElementMatrix(elInfo, mat);

Thomas Witkowski's avatar
Thomas Witkowski committed
1431
    if (rememberElMat && userMat) {
1432
      axpy(factor, *elementMatrix, *userMat);
Thomas Witkowski's avatar
Thomas Witkowski committed
1433
    }    
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
  }

  void Assembler::calculateElementVector(const ElInfo *elInfo, 
					 ElementVector *userVec,
					 double factor)
  {
    FUNCNAME("Assembler::calculateElementVector()");

    if(remember && factor != 1.0) {
      rememberElVec = true;
    }

    if(rememberElVec && !elementVector)
      elementVector = NEW ElementVector(nRow);

    Element *el = elInfo->getElement</