ProblemVec.cc 31.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "ProblemVec.h"
#include "RecoveryEstimator.h"
#include "Serializer.h"
#include "AbstractFunction.h"
#include "Operator.h"
#include "SystemVector.h"
#include "DOFMatrix.h"
#include "FiniteElemSpace.h"
#include "Estimator.h"
#include "Marker.h"
#include "AdaptInfo.h"
#include "FileWriter.h"
#include "CoarseningManager.h"
#include "RefinementManager.h"
#include "Mesh.h"
#include "OEMSolver.h"
#include "Preconditioner.h"
#include "MatVecMultiplier.h"
#include "DirichletBC.h"
#include "RobinBC.h"
#include "PeriodicBC.h"
#include "Lagrange.h"
Thomas Witkowski's avatar
Thomas Witkowski committed
23
#include "Flag.h"
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

namespace AMDiS {

  ProblemVec *ProblemVec::traversePtr_ = NULL;

  void ProblemVec::initialize(Flag initFlag,
			      ProblemVec *adoptProblem,
			      Flag adoptFlag)
  {
    FUNCNAME("ProblemVec::initialize()");
    
    // === create meshes ===
    if (meshes_.size() != 0) { 
      WARNING("meshes already created\n");
    } else {
      if (initFlag.isSet(CREATE_MESH) || 
	  ((!adoptFlag.isSet(INIT_MESH))&&
	   (initFlag.isSet(INIT_SYSTEM) || initFlag.isSet(INIT_FE_SPACE)))) {
	createMesh();
      } 
      if (adoptProblem && 
	  (adoptFlag.isSet(INIT_MESH) || 
	   adoptFlag.isSet(INIT_SYSTEM) ||
	   adoptFlag.isSet(INIT_FE_SPACE))) {
	meshes_ = adoptProblem->getMeshes();
Thomas Witkowski's avatar
Thomas Witkowski committed
49
	componentMeshes = adoptProblem->componentMeshes;
50
51
52
53
54
55
56
57
58
	refinementManager_ = adoptProblem->refinementManager_;
	coarseningManager_ = adoptProblem->coarseningManager_;
      }
    }

    if (meshes_.size() == 0) 
      WARNING("no mesh created\n");

    // === create fespace ===
59
    if (feSpaces.size() != 0) {
60
61
62
63
64
65
66
67
      WARNING("feSpaces already created\n");
    } else {
      if (initFlag.isSet(INIT_FE_SPACE) || 
	  (initFlag.isSet(INIT_SYSTEM)&&!adoptFlag.isSet(INIT_FE_SPACE))) {
	createFESpace();
      } 
      if (adoptProblem &&
	  (adoptFlag.isSet(INIT_FE_SPACE) || adoptFlag.isSet(INIT_SYSTEM))) {
68
69
	feSpaces = adoptProblem->getFESpaces();
	componentSpaces = adoptProblem->componentSpaces;
70
71
72
      }
    }

73
    if (feSpaces.size() == 0) 
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
      WARNING("no feSpace created\n");

    // === create system ===
    if (initFlag.isSet(INIT_SYSTEM)) {
      createMatricesAndVectors();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_SYSTEM)) {
      solution_ = adoptProblem->getSolution();
      rhs_ = adoptProblem->getRHS();
      systemMatrix_ = adoptProblem->getSystemMatrix();
    }

    // === create solver ===
    if (solver_) {
      WARNING("solver already created\n");
    } else {
      if (initFlag.isSet(INIT_SOLVER)) {
	createSolver();
      } 
      if (adoptProblem && adoptFlag.isSet(INIT_SOLVER)) {
	TEST_EXIT(!solver_)("solver already created\n");
	solver_ = adoptProblem->getSolver();
      }
    }

    if (!solver_) 
      WARNING("no solver created\n");

    // === create estimator ===
    if (initFlag.isSet(INIT_ESTIMATOR)) {
      createEstimator();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_ESTIMATOR)) {
      estimator_ = adoptProblem->getEstimator();
    } 

    // === create marker ===
    if (initFlag.isSet(INIT_MARKER)) {
      createMarker();
    } 
    if (adoptProblem && adoptFlag.isSet(INIT_MARKER)) {
115
      marker = adoptProblem->getMarker();
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    } 


    // === create file writer ===
    if (initFlag.isSet(INIT_FILEWRITER)) {
      createFileWriter();
    }

    
    // === read serialization and init mesh ===
    
    // There are two possiblities where the user can define a serialization
    // to be read from disk. Either by providing the parameter -rs when executing
    // the program or in the init file. The -rs parameter is always checked first,
    // because it can be added automatically when  rescheduling the program
    // before timeout of the runqueue.

    int readSerialization = 0;
134
    std::string serializationFilename = "";
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    GET_PARAMETER(0, "argv->rs", &serializationFilename);

    // If the parameter -rs is set, we do nothing here, because the problem will be
    // deserialized in the constructor of a following AdaptInstationary initialization.
    if (!serializationFilename.compare("")) {
      int readSerializationWithAdaptInfo = 0;

      GET_PARAMETER(0, name_ + "->input->read serialization", "%d", 
		    &readSerialization);
      GET_PARAMETER(0, name_ + "->input->serialization with adaptinfo", "%d",
		    &readSerializationWithAdaptInfo);

      // The serialization file is only read, if the adaptInfo part should not be used.
      // If the adaptInfo part should be also read, the serialization file will be read
      // in the constructor of the AdaptInstationary problem, because we do not have here
      // the adaptInfo object.
      if (readSerialization && !readSerializationWithAdaptInfo) {
	GET_PARAMETER(0, name_ + "->input->serialization filename", 
		      &serializationFilename);
	TEST_EXIT(serializationFilename != "")("no serialization file\n");

	MSG("Deserialization from file: %s\n", serializationFilename.c_str());
157
	std::ifstream in(serializationFilename.c_str());
158
159
160
	deserialize(in);
	in.close();
      } else {
161
162
163
164
	int globalRefinements = 0;
	GET_PARAMETER(0, meshes_[0]->getName() + "->global refinements", "%d", 
		      &globalRefinements);

165
166
167
168
169
	// Initialize the meshes if there is no serialization file.
	for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
	  if (initFlag.isSet(INIT_MESH) && 
	      meshes_[i] && 
	      !(meshes_[i]->isInitialized())) {
170
171
	    meshes_[i]->initialize();	    
	    refinementManager_->globalRefine(meshes_[i], globalRefinements);
172
173
174
175
176
177
178
179
180
181
182
183
	  }
	}	
      }
    }

    doOtherStuff();
  }

  void ProblemVec::createMesh() 
  {
    FUNCNAME("ProblemVec::createMesh()");

Thomas Witkowski's avatar
Thomas Witkowski committed
184
    componentMeshes.resize(nComponents);
185
    std::map<int, Mesh*> meshForRefinementSet;
186
187
    char number[3];

188
    std::string meshName("");
189
    GET_PARAMETER(0, name_ + "->mesh", &meshName);
190
    TEST_EXIT(meshName != "")("no mesh name specified\n");
191
192
    int dim = 0;
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
193
    TEST_EXIT(dim)("no problem dimension specified!\n");
194

195
    for (int i = 0; i < nComponents; i++) {
196
      sprintf(number, "%d", i);
197
198
199
      int refSet = -1;
      GET_PARAMETER(0, name_ + "->refinement set[" + number + "]", "%d", &refSet);
      if (refSet < 0) {
200
201
	refSet = 0;
      }
202
      if (meshForRefinementSet[refSet] == NULL) {
203
204
205
206
	Mesh *newMesh = NEW Mesh(meshName, dim);
	meshForRefinementSet[refSet] = newMesh;
	meshes_.push_back(newMesh);
      }
Thomas Witkowski's avatar
Thomas Witkowski committed
207
      componentMeshes[i] = meshForRefinementSet[refSet];
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    }
    switch(dim) {
    case 1:
      coarseningManager_ = NEW CoarseningManager1d();
      refinementManager_ = NEW RefinementManager1d();
      break;
    case 2:
      coarseningManager_ = NEW CoarseningManager2d();
      refinementManager_ = NEW RefinementManager2d();
      break;
    case 3:
      coarseningManager_ = NEW CoarseningManager3d();
      refinementManager_ = NEW RefinementManager3d();
      break;
    default:
      ERROR_EXIT("invalid dim!\n");
    }
  }

  void ProblemVec::createFESpace()
  {
    FUNCNAME("ProblemVec::createFESpace()");

    int degree = 1;
    char number[3];

234
    std::map< std::pair<Mesh*, int>, FiniteElemSpace*> feSpaceMap;
235
    int dim = -1;
236
    GET_PARAMETER(0, name_ + "->dim", "%d", &dim);
237
    TEST_EXIT(dim != -1)("no problem dimension specified!\n");
238

239
    componentSpaces.resize(nComponents, NULL);
240

241
    for (int i = 0; i < nComponents; i++) {
242
243
244
      sprintf(number, "%d", i);
      GET_PARAMETER(0, name_ + "->polynomial degree[" + number + "]","%d", &degree);

245
      TEST_EXIT(componentSpaces[i] == NULL)("feSpace already created\n");
246

Thomas Witkowski's avatar
Thomas Witkowski committed
247
      if (feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] == NULL) {
248
249
250
	FiniteElemSpace *newFESpace = 
	  FiniteElemSpace::provideFESpace(NULL,
					  Lagrange::getLagrange(dim, degree),
Thomas Witkowski's avatar
Thomas Witkowski committed
251
					  componentMeshes[i],
252
					  name_ + "->feSpace");
Thomas Witkowski's avatar
Thomas Witkowski committed
253
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)] = newFESpace;
254
	feSpaces.push_back(newFESpace);
255
      }
256
      componentSpaces[i] = 
Thomas Witkowski's avatar
Thomas Witkowski committed
257
	feSpaceMap[std::pair<Mesh*, int>(componentMeshes[i], degree)];
258
259
260
    }

    // create dof admin for vertex dofs if neccessary
261
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      if (meshes_[i]->getNumberOfDOFs(VERTEX) == 0) {
	DimVec<int> ln_dof(meshes_[i]->getDim(), DEFAULT_VALUE, 0);
	ln_dof[VERTEX]= 1;
	meshes_[i]->createDOFAdmin("vertex dofs", ln_dof);      
      }
    }
  }

  void ProblemVec::createMatricesAndVectors()
  {
    FUNCNAME("ProblemVec::createMatricesAndVectors()");

    int i;

    // === create vectors and system matrix ===

278
    systemMatrix_ = NEW Matrix<DOFMatrix*>(nComponents, nComponents);
279
    systemMatrix_->set(NULL);
280
281
    rhs_ = NEW SystemVector("rhs", componentSpaces, nComponents);
    solution_ = NEW SystemVector("solution", componentSpaces, nComponents);
282
283

    char number[10];
284
285
    std::string numberedName;
    for (i = 0; i < nComponents; i++) {
286
287
      (*systemMatrix_)[i][i] = NEW DOFMatrix(componentSpaces[i], 
					     componentSpaces[i], "A_ii");
288
289
      (*systemMatrix_)[i][i]->setCoupleMatrix(false);
      sprintf(number, "[%d]", i);
290
      numberedName = "rhs" + std::string(number);
291
      rhs_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], numberedName));
292
      numberedName = name_ + std::string(number);
293
      solution_->setDOFVector(i, NEW DOFVector<double>(componentSpaces[i], 
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
						       numberedName));
      solution_->getDOFVector(i)->refineInterpol(true);
      solution_->getDOFVector(i)->setCoarsenOperation(COARSE_INTERPOL);
      solution_->getDOFVector(i)->set(0.0);
    }

    // === create matVec ===
    matVec_ = NEW StandardMatVec<Matrix<DOFMatrix*>, SystemVector>(systemMatrix_);
  }

  void ProblemVec::createSolver()
  {
    FUNCNAME("ProblemVec::createSolver()");

    // === create solver ===
309
    std::string solverType("no");
310
311
312
313
314
315
316
317
318
319
320
321
    GET_PARAMETER(0, name_ + "->solver", &solverType);
    OEMSolverCreator<SystemVector> *solverCreator = 
      dynamic_cast<OEMSolverCreator<SystemVector>*>(
						    CreatorMap<OEMSolver<SystemVector> >
						    ::getCreator(solverType)
						    );
    TEST_EXIT(solverCreator)("no solver type\n");
    solverCreator->setName(name_ + "->solver");
    solver_ = solverCreator->create();
    solver_->initParameters();

    // === create preconditioners ===
322
    std::string preconType("no");
323
324

    PreconditionerScal *scalPrecon;
325
    PreconditionerVec *vecPrecon = NEW PreconditionerVec(nComponents);
326
327
328
329
330
331
332
333
334
335
336

    GET_PARAMETER(0, name_ + "->solver->left precon", &preconType);
    CreatorInterface<PreconditionerScal> *preconCreator =
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    int i, j;

    if (!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");

337
      for(i = 0; i < nComponents; i++) {
338
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
339
	  setSizeAndRow(nComponents, i);
340
341
    
	scalPrecon = preconCreator->create();
342
	for(j = 0; j < nComponents; j++) {
343
344
345
346
347
348
349
350
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      leftPrecon_ = vecPrecon;
    }


351
    vecPrecon = NEW PreconditionerVec(nComponents);
352
353
354
355
356
357
358
359
360
361

    GET_PARAMETER(0, name_ + "->solver->right precon", &preconType);
    preconCreator = 
      CreatorMap<PreconditionerScal>::getCreator(preconType);

    if(!preconCreator->isNullCreator()) {
      dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
	setName(name_ + "->solver->left precon");


362
      for(i = 0; i < nComponents; i++) {
363
	dynamic_cast<PreconditionerScalCreator*>(preconCreator)->
364
	  setSizeAndRow(nComponents, i);
365
366
    
	scalPrecon = preconCreator->create();
367
	for(j = 0; j < nComponents; j++) {
368
369
370
371
372
373
374
375
376
377
	  scalPrecon->setMatrix(&(*systemMatrix_)[i][j], j);
	}
	vecPrecon->setScalarPrecon(i, scalPrecon);
      }
      rightPrecon_ = vecPrecon;
    }


    // === create vector creator ===
    solver_->setVectorCreator(NEW SystemVector::Creator("temp",
378
							componentSpaces, 
379
							nComponents));
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  }

  void ProblemVec::createEstimator()
  {
    FUNCNAME("ProblemVec::createEstimator()");

    int i, j;

    // create and set leaf data prototype
    for(i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->setElementDataPrototype
	(NEW LeafDataEstimatableVec(NEW LeafDataCoarsenableVec));
    }  

    char number[3];
395
    std::string estName;
396

397
    for(i = 0; i < nComponents; i++) {
398
399
      TEST_EXIT(estimator_[i] == NULL)("estimator already created\n");
      sprintf(number, "%d", i);
400
      estName = name_ + "->estimator[" + std::string(number) + "]";
401
402

      // === create estimator ===
403
      std::string estimatorType("no");
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
      GET_PARAMETER(0, estName, &estimatorType);
      EstimatorCreator *estimatorCreator = 
	dynamic_cast<EstimatorCreator*>(
					CreatorMap<Estimator>::getCreator(estimatorType));
      if(estimatorCreator) {
	estimatorCreator->setName(estName);
	estimatorCreator->setRow(i);
	if(estimatorType == "recovery") {
	  dynamic_cast<RecoveryEstimator::Creator*>(estimatorCreator)->
	    setSolution(solution_->getDOFVector(i));
	}
	estimator_[i] = estimatorCreator->create();
      }


      if(estimator_[i]) {
420
	for(j=0; j < nComponents; j++) {
421
422
423
424
425
426
427
428
429
430
431
432
	  estimator_[i]->addSystem((*systemMatrix_)[i][j], 
				   solution_->getDOFVector(j), 
				   rhs_->getDOFVector(j));
	}
      }
    }
  }

  void ProblemVec::createMarker()
  {
    FUNCNAME("ProblemVec::createMarker()");

433
    std::string numberedName;
434
435
    char number[10];
    int numMarkersCreated = 0;
436

437
    for (int i = 0; i < nComponents; i++) {
438
      sprintf(number, "[%d]", i);
439
      numberedName = name_ + "->marker" + std::string(number);
440
441
      marker[i] = Marker::createMarker(numberedName, i);
      if (marker[i]) {
442
443
	numMarkersCreated++;
	if (numMarkersCreated > 1)
444
	  marker[i]->setMaximumMarking(true);
445
446
447
448
449
450
451
452
453
454
      }
    }
  }

  void ProblemVec::createFileWriter()
  {
    FUNCNAME("ProblemVec::createFileWriter()");
  

    // Create one filewriter for all components of the problem
455
456
    std::string numberedName  = name_ + "->output";
    std::string filename = "";
457
458
459
    GET_PARAMETER(0, numberedName + "->filename", &filename);

    if (filename != "") {
460
      std::vector< DOFVector<double>* > solutionList(nComponents);
461

462
      for (int i = 0; i < nComponents; i++) {
Thomas Witkowski's avatar
Thomas Witkowski committed
463
	TEST_EXIT(componentMeshes[0] == componentMeshes[i])
464
465
466
467
468
469
	  ("All Meshes have to be equal to write a vector file.\n");

	solutionList[i] = solution_->getDOFVector(i);
      }

      fileWriters_.push_back(NEW FileWriter(numberedName,
Thomas Witkowski's avatar
Thomas Witkowski committed
470
					    componentMeshes[0],
471
472
473
474
475
476
					    solutionList));
    }


    // Create own filewriters for each components of the problem
    char number[10];
477
    for (int i = 0; i < nComponents; i++) {
478
      sprintf(number, "[%d]", i);
479
      numberedName  = name_ + "->output" + std::string(number);
480
481
482
483
484
      filename = "";
      GET_PARAMETER(0, numberedName + "->filename", &filename);

      if (filename != "") {
	fileWriters_.push_back(NEW FileWriter(numberedName, 
Thomas Witkowski's avatar
Thomas Witkowski committed
485
					      componentMeshes[i], 
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
					      solution_->getDOFVector(i)));
      }
    }


    // Check for serializer
    int writeSerialization = 0;
    GET_PARAMETER(0, name_ + "->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      MSG("Use are using the obsolete parameter: %s->write serialization\n", name_.c_str());
      MSG("Please use instead the following parameter: %s->output->write serialization\n", name_.c_str());
      ERROR_EXIT("Usage of an obsolete parameter (see message above)!\n");
    }

    GET_PARAMETER(0, name_ + "->output->write serialization", "%d", &writeSerialization);
    if (writeSerialization) {
      fileWriters_.push_back(NEW Serializer<ProblemVec>(this));
    }
  }

  void ProblemVec::doOtherStuff()
  {
  }

  void ProblemVec::solve(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("Problem::solve()");

    if (!solver_) {
      WARNING("no solver\n");
      return;
    }

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    clock_t first = clock();
    int iter = solver_->solve(matVec_, solution_, rhs_, leftPrecon_, rightPrecon_);   
525
    
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#ifdef _OPENMP
    INFO(info_, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif


    adaptInfo->setSolverIterations(iter);
    adaptInfo->setMaxSolverIterations(solver_->getMaxIterations());
    adaptInfo->setSolverTolerance(solver_->getTolerance());
    adaptInfo->setSolverResidual(solver_->getResidual());
  }

  void ProblemVec::estimate(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::estimate()");

    clock_t first = clock();

548
549
550
551
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

552
    if (computeExactError) {
Thomas Witkowski's avatar
Thomas Witkowski committed
553
      computeError(adaptInfo);
554
555
556
557
558
559
560
561
562
563
564
565
566
    } else {
      for (int i = 0; i < nComponents; i++) {
	Estimator *scalEstimator = estimator_[i];
	
	if (scalEstimator) {
	  scalEstimator->estimate(adaptInfo->getTimestep());
	  adaptInfo->setEstSum(scalEstimator->getErrorSum(), i);
	  adaptInfo->setEstMax(scalEstimator->getErrorMax(), i);
	  adaptInfo->setTimeEstSum(scalEstimator->getTimeEst(), i);
	  adaptInfo->setTimeEstMax(scalEstimator->getTimeEstMax(), i);
	} else {
	  WARNING("no estimator for component %d\n" , i);
	}
567
568
569
      }
    }

570
571
572
573
574
575
576
577
578
579
#ifdef _OPENMP
    INFO(info_, 8)("estimation of the error needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("estimation of the error needed %.5f seconds\n",
		   TIME_USED(first, clock()));

#endif

580
581
582
583
584
585
586
587
588
589
590
  }

  Flag ProblemVec::markElements(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::markElements()");

    // to enforce albert-like behavior: refinement even if space tolerance
    // here is reached already because of time adaption
    allowFirstRefinement();

    Flag markFlag = 0;
591
    for (int i = 0; i < nComponents; i++) {
592
      if (marker[i]) {
Thomas Witkowski's avatar
Thomas Witkowski committed
593
	markFlag |= marker[i]->markMesh(adaptInfo, componentMeshes[i]);
594
595
596
597
      } else {
	WARNING("no marker for component %d\n", i);
      }
    }
598
    
599
600
601
602
603
604
605
    return markFlag;
  }

  Flag ProblemVec::refineMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::refineMesh()");

606
    int nMeshes = static_cast<int>(meshes_.size());
607
    Flag refineFlag = 0;
608
    for (int i = 0; i < nMeshes; i++) {
609
610
611
612
613
614
615
616
617
      refineFlag |= refinementManager_->refineMesh(meshes_[i]);
    }
    return refineFlag;
  }

  Flag ProblemVec::coarsenMesh(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::coarsenMesh()");

618
    int nMeshes = static_cast<int>(meshes_.size());
619
    Flag coarsenFlag = 0;
620
621
    for (int i = 0; i < nMeshes; i++) {
      if (adaptInfo->isCoarseningAllowed(i)) {
622
623
624
625
626
627
628
629
630
631
632
633
634
	coarsenFlag |= coarseningManager_->coarsenMesh(meshes_[i]);

	WARNING("coarsening for component %d no allowed\n", i);
      }
    }
    return coarsenFlag;
  }

  Flag ProblemVec::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    FUNCNAME("ProblemVec::oneIteration()");

    if (allowFirstRef_) {
635
      for (int i = 0; i < nComponents; i++) {
636
637
638
639
	adaptInfo->allowRefinement(true, i);
      }
      allowFirstRef_ = false;
    } else {
640
      for (int i = 0; i < nComponents; i++) {
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
	if (adaptInfo->spaceToleranceReached(i)) {
	  adaptInfo->allowRefinement(false, i);
	} else {
	  adaptInfo->allowRefinement(true, i);	
	}
      }
    }

    return StandardProblemIteration::oneIteration(adaptInfo, toDo);
  }

  void ProblemVec::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag) 
  {
    FUNCNAME("ProblemVec::buildAfterCoarsen()");

    clock_t first = clock();

658
659
660
661
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

Thomas Witkowski's avatar
Thomas Witkowski committed
662
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
      meshes_[i]->dofCompress();
    }

    Flag assembleFlag = 
      flag | 
      (*systemMatrix_)[0][0]->getAssembleFlag() | 
      rhs_->getDOFVector(0)->getAssembleFlag()   |
      Mesh::CALL_LEAF_EL                        | 
      Mesh::FILL_COORDS                         |
      Mesh::FILL_DET                            |
      Mesh::FILL_GRD_LAMBDA |
      Mesh::FILL_NEIGH;

    if (useGetBound_) {
      assembleFlag |= Mesh::FILL_BOUND;
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
680

681
    for (int i = 0; i < nComponents; i++) {
682
      MSG("%d DOFs for %s\n", 
683
684
	  componentSpaces[i]->getAdmin()->getUsedSize(), 
	  componentSpaces[i]->getName().c_str());
685
686

      rhs_->getDOFVector(i)->set(0.0);
687
      for (int j = 0; j < nComponents; j++) {
688
689
690
691
692
693
694
	if ((*systemMatrix_)[i][j]) {
	  // The matrix should not be deleted, if it was assembled before
	  // and it is marked to be assembled only once.
	  if (!(assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j])) {
	    (*systemMatrix_)[i][j]->clear();
	  }
	}
695
696
697
      }
    }

698
699
700
701
    int i;
#ifdef _OPENMP
#pragma omp parallel for 
#endif
702
    for (i = 0; i < nComponents; i++) {
703
      const BasisFunction *basisFcts = componentSpaces[i]->getBasisFcts();
704

705
      for (int j = 0; j < nComponents; j++) {
706
707
708
709
	// Only if this variable is true, the current matrix will be assembled.	
	bool assembleMatrix = true;
	// The DOFMatrix which should be assembled (or not, if assembleMatrix
	// will be set to false).
710
711
	DOFMatrix *matrix = (*systemMatrix_)[i][j];

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
	// If the matrix was assembled before and it is marked to be assembled
	// only once, it will not be assembled.
	if (assembleMatrixOnlyOnce_[i][j] && assembledMatrix_[i][j]) {
	  assembleMatrix = false;
	}
	// If there is no DOFMatrix (e.g. if it is completly 0), do not assemble.
	if (!matrix) {
	  assembleMatrix = false;
	}

	// If the matrix should not be assembled, the rhs vector has to be considered.
	// This will be only done, if i == j. So, if both is not true, we can jump
	// to the next matrix.
	if (!assembleMatrix && i != j) {
	  continue;
	}

729
730
731
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->initMatrix(matrix);

732
733
734
735
	BoundaryType *bound = NULL;
	if (useGetBound_) {
	  bound = GET_MEMORY(BoundaryType, basisFcts->getNumber());
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
736
	
737
	TraverseStack stack;
Thomas Witkowski's avatar
Thomas Witkowski committed
738
	ElInfo *elInfo = stack.traverseFirst(componentMeshes[i], -1, assembleFlag);
739
740
	
	while (elInfo) {
741
	  if (useGetBound_) {
742
	    basisFcts->getBound(elInfo, bound);
743
	  }
Thomas Witkowski's avatar
Thomas Witkowski committed
744
	  
745
746
	  if (assembleMatrix) {
	    matrix->assemble(1.0, elInfo, bound);
Thomas Witkowski's avatar
Thomas Witkowski committed
747
	    
748
749
750
751
752
	    if (matrix->getBoundaryManager()) {
	      matrix->
		getBoundaryManager()->
		fillBoundaryConditions(elInfo, matrix);
	    }		      
753
	  }
754
755
756
757
758
759
	  
	  if (i == j) {
	    rhs_->getDOFVector(i)->assemble(1.0, elInfo, bound);
	  }
	  
	  elInfo = stack.traverseNext(elInfo);
760
	}
Thomas Witkowski's avatar
Thomas Witkowski committed
761
	
762
763
764
765
766
767
768
	if (assembleMatrix && matrix->getBoundaryManager())
	  matrix->getBoundaryManager()->exitMatrix(matrix);	  
	
	if (useGetBound_) {
	  FREE_MEMORY(bound, BoundaryType, basisFcts->getNumber());
	}	  
	
769
	assembledMatrix_[i][j] = true;
770
771
772
773
      }

      // fill boundary conditions
      if (rhs_->getDOFVector(i)->getBoundaryManager())
774
	rhs_->getDOFVector(i)->getBoundaryManager()->initVector(rhs_->getDOFVector(i));     
775
      
776
      if (solution_->getDOFVector(i)->getBoundaryManager())
777
      	solution_->getDOFVector(i)->getBoundaryManager()->initVector(solution_->getDOFVector(i));
778

Thomas Witkowski's avatar
Thomas Witkowski committed
779
      TraverseStack stack;
Thomas Witkowski's avatar
Thomas Witkowski committed
780
      ElInfo *elInfo = stack.traverseFirst(componentMeshes[i], -1, assembleFlag);
781
      while (elInfo) {
782
	if (rhs_->getDOFVector(i)->getBoundaryManager())
783
784
	  rhs_->getDOFVector(i)->getBoundaryManager()->
	    fillBoundaryConditions(elInfo, rhs_->getDOFVector(i));
785
786

	if (solution_->getDOFVector(i)->getBoundaryManager())
787
788
789
790
	  solution_->getDOFVector(i)->getBoundaryManager()->
	    fillBoundaryConditions(elInfo, solution_->getDOFVector(i));
	elInfo = stack.traverseNext(elInfo);
      }
791
      
792
793
794
      if (rhs_->getDOFVector(i)->getBoundaryManager())
	rhs_->getDOFVector(i)->getBoundaryManager()->exitVector(rhs_->getDOFVector(i));
      if (solution_->getDOFVector(i)->getBoundaryManager())
Thomas Witkowski's avatar
Thomas Witkowski committed
795
      solution_->getDOFVector(i)->getBoundaryManager()->exitVector(solution_->getDOFVector(i));    
796
    }
797
798
799
800
801
802

#ifdef _OPENMP
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
803
    INFO(info_, 8)("buildAfterCoarsen needed %.5f seconds\n",
Thomas Witkowski's avatar
Thomas Witkowski committed
804
		   TIME_USED(first, clock()));
805
#endif
806
807
808
809
810
811
  }

  void ProblemVec::writeFiles(AdaptInfo *adaptInfo, bool force) 
  {
    FUNCNAME("ProblemVec::writeFiles()");

812
813
814
815
816
817
818
819
820
821
822
823
824
    clock_t first = clock();

#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif

    int i;
    int size = static_cast<int>(fileWriters_.size());
#ifdef _OPENMP
#pragma omp parallel for schedule(static, 1)
#endif
    for (i = 0; i < size; i++) {
      fileWriters_[i]->writeFiles(adaptInfo, force);
825
    }
826
827
828
829
830
831
832
833
834
    
#ifdef _OPENMP
    INFO(info_, 8)("writeFiles needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info_, 8)("writeFiles needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif
835
836
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
837
838
839
840
841
842
843
  void ProblemVec::writeDelayedFiles()
  {
    for (int i = 0; i < static_cast<int>(fileWriters_.size()); i++) {
      fileWriters_[i]->writeDelayedFiles();
    }
  }

Thomas Witkowski's avatar
Thomas Witkowski committed
844
845
846
847
848
849
850
851
852
853
  bool ProblemVec::existsDelayedCalculation()
  {
    for (int i = 0; i < static_cast<int>(fileWriters_.size()); i++) {
      if (fileWriters_[i]->isWritingDelayed())
	return true;   
    }

    return false;
  }

854
  void ProblemVec::interpolInitialSolution(std::vector<AbstractFunction<double, WorldVector<double> >*> *fct) 
855
856
857
858
859
860
861
862
863
864
865
866
867
  {
    FUNCNAME("ProblemVec::interpolInitialSolution()");

    solution_->interpol(fct);
  }

  void ProblemVec::addMatrixOperator(Operator *op, 
				     int i, int j,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addMatrixOperator()");

868
    if (!(*systemMatrix_)[i][j]) {
869
      TEST_EXIT(i != j)("should have been created already\n");
870
871
      (*systemMatrix_)[i][j] = NEW DOFMatrix(componentSpaces[i],
					     componentSpaces[j],
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
					     "");
      (*systemMatrix_)[i][j]->setCoupleMatrix(true);

      (*systemMatrix_)[i][j]->getBoundaryManager()->
	setBoundaryConditionMap((*systemMatrix_)[i][i]->getBoundaryManager()->
				getBoundaryConditionMap());
    }    
    (*systemMatrix_)[i][j]->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addVectorOperator(Operator *op, int i,
				     double *factor,
				     double *estFactor)
  {
    FUNCNAME("ProblemVec::addVectorOperator()");

    rhs_->getDOFVector(i)->addOperator(op, factor, estFactor);
  }

  void ProblemVec::addDirichletBC(BoundaryType type, int system,
				  AbstractFunction<double, WorldVector<double> >* b)
  {
    FUNCNAME("ProblemVec::addDirichletBC()");

    DirichletBC *dirichlet = new DirichletBC(type, 
					     b, 
898
					     componentSpaces[system]);
899
    for (int i = 0; i < nComponents; i++) {
900
901
902
903
      if (systemMatrix_ && (*systemMatrix_)[system][i]) {
	(*systemMatrix_)[system][i]->getBoundaryManager()->addBoundaryCondition(dirichlet);
      }
    }
904

905
906
    if (rhs_)
      rhs_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
907

908
909
910
911
912
913
914
915
916
917
918
    if (solution_)
      solution_->getDOFVector(system)->getBoundaryManager()->addBoundaryCondition(dirichlet);
  }

  void ProblemVec::addNeumannBC(BoundaryType type, int row, int col, 
				AbstractFunction<double, WorldVector<double> > *n)
  {
    FUNCNAME("ProblemVec::addNeumannBC()");

    NeumannBC *neumann = 
      new NeumannBC(type, n, 
919
920
		    componentSpaces[row], 
		    componentSpaces[col]);
921
    if (rhs_)
922
923
924
925
926
927
928
929
930
931
932
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(neumann);
  }

  void ProblemVec::addRobinBC(BoundaryType type, int row, int col, 
			      AbstractFunction<double, WorldVector<double> > *n,
			      AbstractFunction<double, WorldVector<double> > *r)
  {
    FUNCNAME("ProblemVec::addRobinBC()");

    RobinBC *robin = 
      new RobinBC(type, n, r, 
933
934
		  componentSpaces[row], 
		  componentSpaces[col]);
935
    if (rhs_)
936
      rhs_->getDOFVector(row)->getBoundaryManager()->addBoundaryCondition(robin);
937
938

    if (systemMatrix_ && (*systemMatrix_)[row][col]) {
939
940
941
942
943
944
945
946
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(robin);
    }
  }

  void ProblemVec::addPeriodicBC(BoundaryType type, int row, int col) 
  {
    FUNCNAME("ProblemVec::addPeriodicBC()");

947
    FiniteElemSpace *feSpace = componentSpaces[row];
948
949
950

    PeriodicBC *periodic = new PeriodicBC(type, feSpace);

951
    if (systemMatrix_ && (*systemMatrix_)[row][col]) 
952
      (*systemMatrix_)[row][col]->getBoundaryManager()->addBoundaryCondition(periodic);
953
954

    if (rhs_) 
955
956
957
958
      rhs_->getDOFVector(row)->getBoundaryManager()->
	addBoundaryCondition(periodic);
  }

959
  void ProblemVec::writeResidualMesh(AdaptInfo *adaptInfo, const std::string name)
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
  {
    FUNCNAME("ProblemVec::writeResidualMesh()");

    Mesh *mesh = this->getMesh(0);
    FiniteElemSpace *fe = this->getFESpace(0);
    
    std::map<int, double> vec;
    
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh,
					 -1, 
					 Mesh::CALL_LEAF_EL | 
					 Mesh::FILL_COORDS);
    
    while (elInfo) {		  
      Element *el = elInfo->getElement();
      double lError = el->getEstimation(0);
      
      vec[elInfo->getElement()->getIndex()] = lError;
      elInfo = stack.traverseNext(elInfo);
    }
    
    ElementFileWriter fw(name, mesh, fe, vec);
    fw.writeFiles(adaptInfo, true);    
  }

986
  void ProblemVec::serialize(std::ostream &out) 
987
988
989
990
991
992
993
994
995
996
997
998
  {
    FUNCNAME("ProblemVec::serialize()");

    SerializerUtil::serializeBool(out, &allowFirstRef_);
    
    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->serialize(out);
    }

    solution_->serialize(out);
  }

999
  void ProblemVec::deserialize(std::istream &in) 
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
  {
    FUNCNAME("ProblemVec::deserialize()");

    SerializerUtil::deserializeBool(in, &allowFirstRef_);

    for (int i = 0; i < static_cast<int>(meshes_.size()); i++) {
      meshes_[i]->deserialize(in);
    }

    solution_->deserialize(in);
  }
Thomas Witkowski's avatar
Thomas Witkowski committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

  void ProblemVec::computeError(AdaptInfo *adaptInfo) 
  {
    FUNCNAME("ProblemVec::computeError()");

    for (int i = 0; i < nComponents; i++) {		
      TEST_EXIT(exactSolutionFcts[i])("No solution function given!\n");

      // Compute the difference between exact and computed solution
      DOFVector<double> *tmp = NEW DOFVector<double>(componentSpaces[i], "tmp");
      tmp->interpol(exactSolutionFcts[i]);
      double solMax = tmp->absMax();
      *tmp -= *(solution_->getDOFVector(i));
      
      MSG("L2    error = %.8e\n", tmp->L2Norm());
      MSG("L-inf error = %.8e\n", tmp->absMax() / solMax);
      
      adaptInfo->setEstSum(tmp->absMax() / solMax, i);
      adaptInfo->setEstMax(tmp->absMax() / solMax, i);
      
      // To set element estimates, compute a vector with the difference
      // between exact and computed solution for each DOF.
      DOFVector<double> *sol = NEW DOFVector<double>(componentSpaces[i], "tmp");
      sol->interpol(exactSolutionFcts[i]);
      DOFVector<double>::Iterator it1(sol, USED_DOFS);
      DOFVector<double>::Iterator it2(tmp, USED_DOFS);
      for (it1.reset(), it2.reset(); !it1.end(); ++it1, ++it2) {
	if ((abs(*it1) <= DBL_TOL) || (abs(*it2) <= DBL_TOL)) {
	  *it2 = 0.0;
	} else {
	  *it2 = abs(*it2 / *it1);
	}
      }

      // Compute estimate for every mesh element
      Vector<DegreeOfFreedom> locInd(componentSpaces[i]->getBasisFcts()->getNumber());
      TraverseStack stack;
      ElInfo *elInfo = stack.traverseFirst(componentMeshes[i], -1, Mesh::CALL_LEAF_EL);
      while (elInfo) {
	componentSpaces[i]->getBasisFcts()->getLocalIndicesVec(elInfo->getElement(),
							       componentSpaces[i]->getAdmin(),
							       &locInd);
	double estimate = 0.0;
	for (int j = 0; j < componentSpaces[i]->getBasisFcts()->getNumber(); j++) {
	  estimate += (*tmp)[locInd[j]];
	}
	elInfo->getElement()->setEstimation(estimate, i);
	elInfo->getElement()->setMark(0);
								
	elInfo = stack.traverseNext(elInfo);
      }  
      
      DELETE tmp;	
      DELETE sol;
    }						           
  }
1067
1068
}