Liebe Gitlab-Nutzer, lieber Gitlab-Nutzer, es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Ein Anmelden über dieses erzeugt ein neues Konto. Das alte Konto ist über den Reiter "Standard" erreichbar. Die Administratoren

Dear Gitlab user, it is now possible to log in to our service using the ZIH login/LDAP. Logging in via this will create a new account. The old account can be accessed via the "Standard" tab. The administrators

Refinement.h 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/******************************************************************************
 *
 * Extension of AMDiS - Adaptive multidimensional simulations
 *
 * Copyright (C) 2013 Dresden University of Technology. All Rights Reserved.
 * Web: https://fusionforge.zih.tu-dresden.de/projects/amdis
 *
 * Authors: Simon Praetorius et al.
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * See also license.opensource.txt in the distribution.
 * 
 ******************************************************************************/


#ifndef EXTENSIONS_REFINEMENT_H
#define EXTENSIONS_REFINEMENT_H
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

#include "ElementFunction.h"

using namespace AMDiS;


/** \brief
 * Abstract class that can be passed to RefinementLevel* as indicator where
 * to refine the mesh up to which level. It is an AbstractFunction that 
 * overloads the operator() method to return a level or a meshsize depending
 * on the coords/data passed to the operator.
 * You can switch between meshsize and level with the methods hToLevel(double) and 
 * levelToH(int)
 **/
template<typename T, typename T2>
class MeshRefinementFunction : public AbstractFunction<T2, T>
{
public:

  MeshRefinementFunction(Mesh* mesh_) :
    AbstractFunction<T2, T>(0),
    mesh(mesh_), 
    globalSize(0)
  {
      h0 = getMacroMeshSize(mesh);
      reduction = 1.0 / sqrt(2.0); // if dim==2
  }

  int getGlobalSize() { return globalSize; }

  double meshSize() { return h0; }

  virtual T2 operator()(const T &value) const { return globalSize; }
  
  virtual double indicator(const T &value) const { return 1.0; }

protected:

  int hToLevel(double h) {
      int level = static_cast<int>(floor(log(h / h0) / log(reduction)));
      return level;
  }

  double levelToH(int level) {
      double h = pow(reduction,level)*h0;
      return h;
  }

  double getMacroMeshSize(Mesh* mesh) {
      FixVec<WorldVector<double>, VERTEX> coords = mesh->getMacroElement(0)->getCoord();
      double h = 0.0;
      for (int i = 0; i < coords.size(); ++i)
          for (int j = i + 1; j < coords.size(); ++j)
              h = std::max(h, norm(coords[i]-coords[j]));
      return h;
  }

protected:

  Mesh* mesh;

  int globalSize;

  double h0;
  double reduction;
};


/** \brief
 * Base class for Refinement structure to perform local anisotropic refinement
 */
template<typename T, typename T2>
class RefinementLevel
{
public:

  RefinementLevel(const FiniteElemSpace *feSpace_, MeshRefinementFunction<T,T2>* refineFct_) :
    feSpace(feSpace_), 
    refineFct(refineFct_),
    numRefinements0(15),
    globalRefined(false)
  {	
Praetorius, Simon's avatar
Praetorius, Simon committed
103 104
    FUNCNAME("RefinementLevel::RefinementLevel()");
    
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    mesh = feSpace->getMesh();
    switch (mesh->getDim()) {
    case 1:
      coarseningManager = new CoarseningManager1d();
      refinementManager = new RefinementManager1d();
      break;
    case 2:
      coarseningManager = new CoarseningManager2d();
      refinementManager = new RefinementManager2d();
      break;
    case 3:
      coarseningManager = new CoarseningManager3d();
      refinementManager = new RefinementManager3d();
      break;
    default:
      ERROR_EXIT("invalid dim!\n");
    }

    numRefinements = numRefinements0;
  }
  
Praetorius, Simon's avatar
Praetorius, Simon committed
126
  virtual ~RefinementLevel() {
127 128 129 130 131 132 133 134 135
    delete coarseningManager;
    delete refinementManager;
  }

  void refine(bool onlyRefine= false) 
  {
    FUNCNAME("RefinementLevel::refine()");

    if (!globalRefined) {
136
      MSG("nr of global refinements: %d\n", refineFct->getGlobalSize());
137 138 139 140 141 142 143 144 145
      refinementManager->globalRefine(mesh, refineFct->getGlobalSize());
      globalRefined = true;
    }
    double minH = 0.0, maxH = 1.0;
    int minLevel = 100, maxLevel = 0;
    
    // build mesh for phasefield-function
    bool meshChanged = true;
    Flag markFlag;
Praetorius, Simon's avatar
Praetorius, Simon committed
146
    int oldNr = 0, oldOldNr = 0;
147 148 149 150 151 152 153 154 155
    int i = 0;
    while (meshChanged && i < numRefinements) {
      markElements(markFlag);
      meshChanged = refineMesh(markFlag, onlyRefine);
      
      calcMeshSizes(minH, maxH, minLevel, maxLevel); 
      int nr = mesh->getNumberOfVertices();
      meshChanged = meshChanged && oldOldNr!=nr && oldNr!=nr;
      if (meshChanged) {
156
	MSG("Mesh sizes: [%f, %f], Vs: %d, ELs: %d\n", 
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
          minH, maxH, nr, mesh->getNumberOfElements());
      }
      i++;
			
      oldOldNr = oldNr;
      oldNr = nr; 
    }
    calcMeshSizes(minH, maxH, minLevel, maxLevel); 
    MSG("Final mesh: [%f, %f], Vs: %d, ELs: %d, Level: [%d, %d]\n",
      minH, maxH, mesh->getNumberOfVertices(), mesh->getNumberOfElements(), minLevel, maxLevel);
  }

  void refine(int numRefinements_, bool onlyRefine= false) { 
    numRefinements = numRefinements_; 
    refine(onlyRefine);  
    numRefinements = numRefinements0; 
  }

  int getNumRefinements(){
      return numRefinements;
  }

  void calcMeshSizes(double& minH, double& maxH, int& minLevel, int& maxLevel) 
  {
    FixVec<WorldVector<double>, VERTEX> coords(mesh->getDim(), NO_INIT);

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL | Mesh::FILL_COORDS);
    minH = 1e15; maxH = 0.0;
    int k = 0;
    minLevel = 100;
    maxLevel = 0;
    while (elInfo) {
      maxLevel = std::max(maxLevel,elInfo->getLevel());
      minLevel = std::min(minLevel,elInfo->getLevel());
      coords = elInfo->getCoords();
      double h = 0.0;
      for (int i = 0; i < coords.size(); i++) {
        for (int j = 0; j < coords.size(); j++) {
	  if (i != j)
            h = std::max(h,norm(coords[i]-coords[j]));
        }
      }
      minH = std::min(h, minH);
      maxH = std::max(h, maxH);
      elInfo = stack.traverseNext(elInfo);
      k++;
    }
    minLevel += mesh->getMacroElementLevel();
    maxLevel += mesh->getMacroElementLevel();
  }


  double calcMeshSize(ElInfo *elInfo) 
  {
    FixVec<WorldVector<double>, VERTEX> coords(mesh->getDim(), NO_INIT);
    coords = elInfo->getCoords();
    double h = 0.0;
    for (int i = 0; i < coords.size(); i++) {
      for (int j = 0; j < coords.size(); j++) {
        if (i != j)
          h = std::max(h,norm(coords[i]-coords[j]));
      }
    }

    return h;
  }


  int calcMark(double refineH, double currentH)
  {
    return (refineH < currentH ? 
        1 : (refineH > currentH * (mesh->getDim() == 1 ? 
          2.0 : (mesh->getDim() == 2 ? 
          sqrt(2.0) : 
          sqrt(2.0)/2.0 + 0.5)) ? 
        -1 : 
        0));
  }


  virtual int calcMark(int refineLevel, int currentLevel)
  {
    int levelDiff = refineLevel - currentLevel;
    return (levelDiff > 0 ? 1 : (levelDiff < 0 ? -1 : 0));
  }

	
  bool refineMesh(Flag markFlag, bool onlyRefine) 
  {
    int oldSize = mesh->getNumberOfVertices();
    if (markFlag.isSet(1))
      refinementManager->refineMesh(mesh);
    if (markFlag.isSet(2) && !onlyRefine)
      coarseningManager->coarsenMesh(mesh);
    if (markFlag.isSet(1) || markFlag.isSet(2)) {
      int newSize = mesh->getNumberOfVertices();
      if (oldSize != newSize) 
        return true;
    }
    return false;
  }

  virtual void markElements(Flag &markFlag) = 0;

  void setGlobalRefined(bool refined) { globalRefined = refined; }
  RefinementManager* getRefinementManager() { return refinementManager; }
  CoarseningManager* getCoarseningManager() { return coarseningManager; }

protected:

  const FiniteElemSpace *feSpace;
  Mesh* mesh;
  MeshRefinementFunction<T,T2>* refineFct;
  RefinementManager* refinementManager;
  CoarseningManager* coarseningManager;

  int numRefinements;
  int numRefinements0;
  bool globalRefined;
};

#include "Refinement_Level.h"
280
// #include "Refinement_MeshSize.h"
281

282
#endif // EXTENSIONS_REFINEMENT_H