RefinementManager3d.cc 27.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "RefinementManager.h"
#include "Mesh.h"
#include "Traverse.h"
#include "ElInfo.h"
#include "DOFAdmin.h"
#include "AdaptStationary.h"
#include "AdaptInstationary.h"
#include "FixVec.h"
#include "RCNeighbourList.h"
#include "ProblemStatBase.h"
#include "DOFIndexed.h"
#include "Projection.h"
#include "DOFVector.h"
#include "PeriodicBC.h"
#include "VertexVector.h"

namespace AMDiS {

  void RefinementManager3d::bisectTetrahedron(RCNeighbourList* ref_list, 
					      int index,
					      DegreeOfFreedom* dof[3],
					      DegreeOfFreedom *edge[2])
  {
    Tetrahedron *el = dynamic_cast<Tetrahedron*>(const_cast<Element*>( ref_list->getElement(index))), *child[2];
25
26
    int i, node;
    int el_type = ref_list->getType(index);
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    child[0] = dynamic_cast<Tetrahedron*>(mesh->createNewElement(el));
    child[1] = dynamic_cast<Tetrahedron*>(mesh->createNewElement(el));
  
    int mark = max(0, el->getMark()-1);
    child[0]->setMark(mark);
    child[1]->setMark(mark);
    el->setMark(0);

    /****************************************************************************/
    /*  transfer hidden data from parent to children                            */
    /****************************************************************************/

    el->refineElementData(child[0], child[1], el_type);

    el->setFirstChild(child[0]);
    el->setSecondChild(child[1]);

    if (child[0]->getMark() > 0)  doMoreRecursiveRefine = true;

    int n_vertices = mesh->getGeo(VERTEX);
    child[0]->setDOF(n_vertices-1, dof[0]);
    child[1]->setDOF(n_vertices-1, dof[0]);

    for (i = 0; i < n_vertices-1; i++)
      {
	child[0]->
	  setDOF(i, const_cast<int*>( el->getDOF(Tetrahedron::childVertex[el_type][0][i])));
	child[1]->
	  setDOF(i, const_cast<int*>( el->getDOF(Tetrahedron::childVertex[el_type][1][i])));
      }
    /****************************************************************************/
    /*  there is one more leaf element and two more hierachical elements        */
    /****************************************************************************/

    mesh->incrementNumberOfLeaves(1);
    mesh->incrementNumberOfElements(2);

    /****************************************************************************/
    /* first set those dof pointers for higher order without neighbour          */
    /* information                                                              */
    /****************************************************************************/

    if (mesh->getNumberOfDOFs(EDGE))
      {
	node = mesh->getNode(EDGE);

	/****************************************************************************/
	/*  set pointers to those dof's that are handed on from the parant          */
	/****************************************************************************/

	child[0]->
	  setDOF(node, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][0][0])));
	child[1]->
	  setDOF(node, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][1][0])));
	child[0]->
	  setDOF(node+1, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][0][1])));
	child[1]->
	  setDOF(node+1, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][1][1])));
	child[0]->
	  setDOF(node+3, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][0][3])));
	child[1]->
	  setDOF(node+3, 
		 const_cast<int*>( el->getDOF(node+Tetrahedron::childEdge[el_type][1][3])));

	/****************************************************************************/
	/*  adjust pointers to the dof's in the refinement edge                     */
	/****************************************************************************/

	if (el->getDOF(0) == edge[0])
	  {
	    child[0]->setDOF(node+2, dof[1]);
	    child[1]->setDOF(node+2, dof[2]);
	  }
	else
	  {
	    child[0]->setDOF(node+2, dof[2]);
	    child[1]->setDOF(node+2, dof[1]);
	  }
      }

    if (mesh->getNumberOfDOFs(FACE))
      {
	node = mesh->getNode(FACE);    

	/****************************************************************************/
	/*  set pointers to those dof's that are handed on from the parant          */
	/****************************************************************************/

	child[0]->setDOF(node+3, const_cast<int*>( el->getDOF(node+1)));
	child[1]->setDOF(node+3, const_cast<int*>( el->getDOF(node+0)));

	/****************************************************************************/
	/*  get new dof for the common face of child0 and child1                    */
	/****************************************************************************/

	DegreeOfFreedom *newDOF = mesh->getDOF(FACE);
	child[0]->setDOF(node, static_cast<int*>( newDOF));
	child[1]->setDOF(node, static_cast<int*>( newDOF));
      }
  
    if (mesh->getNumberOfDOFs(CENTER))
      {
	node = mesh->getNode(CENTER);
	child[0]->setDOF(node, const_cast<int*>( mesh->getDOF(CENTER)));
	child[1]->setDOF(node, const_cast<int*>( mesh->getDOF(CENTER)));
      }

    if (mesh->getNumberOfDOFs(EDGE)  || mesh->getNumberOfDOFs(FACE))
      fillPatchConnectivity(ref_list, index);

    //   MSG("%d -> %d %d\n", 
    //       el->getIndex(),
    //       child[0]->getIndex(),
    //       child[1]->getIndex());
  }

  void RefinementManager3d::fillPatchConnectivity(RCNeighbourList* ref_list, 
						  int index)
  {
    FUNCNAME("RefinementManager3d::fillPatchConnectivity");
    Element *el = ref_list->getElement(index), *neigh;
    int     dir, el_type = ref_list->getType(index), n_type = 0;
    int     adjc, i, j, i_neigh, j_neigh;
    int     node0, node1, opp_v = 0;

    for (dir = 0; dir < 2; dir++)
      {
	neigh = ref_list->getNeighbourElement(index, dir);
	if (neigh)
	  {
	    n_type = ref_list->getType( ref_list->getNeighbourNr(index, dir) );
	    opp_v = ref_list->getOppVertex(index, dir);
	  }

	if (!neigh  ||  neigh->isLeaf())
	  {

	    /****************************************************************************/
	    /*  get new dof's in the midedge of the face of el and for the two midpoints*/
	    /*  of the sub-faces. If face is an interior face those pointers have to be */
	    /*  adjusted by the neighbour element also (see below)                      */
	    /****************************************************************************/

	    if (mesh->getNumberOfDOFs(EDGE))
	      {
		node0 = node1 = mesh->getNode(EDGE);
		node0 += Tetrahedron::nChildEdge[el_type][0][dir];
		node1 += Tetrahedron::nChildEdge[el_type][1][dir];
		DegreeOfFreedom *newDOF = mesh->getDOF(EDGE);
		(const_cast<Element*>( el->getFirstChild()))->setDOF(node0, newDOF);
		(const_cast<Element*>( el->getSecondChild()))->setDOF(node1, newDOF);
	      }
	    if (mesh->getNumberOfDOFs(FACE))
	      {
		node0 = mesh->getNode(FACE) + Tetrahedron::nChildFace[el_type][0][dir];
		(const_cast<Element*>( el->getFirstChild()))->setDOF(node0, mesh->getDOF(FACE));
		node1 = mesh->getNode(FACE) + Tetrahedron::nChildFace[el_type][1][dir];
		(const_cast<Element*>( el->getSecondChild()))->setDOF(node1, mesh->getDOF(FACE));
	      }
	  }
	else     /*   if (!neigh  ||  !neigh->child[0])                         */
	  {
	    /****************************************************************************/
	    /*  interior face and neighbour has been refined, look for position at the  */
	    /*  refinement edge                                                         */
	    /****************************************************************************/
      
	    if (el->getDOF(0) == neigh->getDOF(0))
	      {
		/****************************************************************************/
		/* same position at refinement edge                                         */
		/****************************************************************************/
		adjc = 0;
	      }
	    else
	      {
		/****************************************************************************/
		/* different position at refinement edge                                    */
		/****************************************************************************/
		adjc = 1;
	      }

	    for (i = 0; i < 2; i++)
	      {
		j = Tetrahedron::adjacentChild[adjc][i];

		i_neigh = Tetrahedron::nChildFace[el_type][i][dir];
		j_neigh = Tetrahedron::nChildFace[n_type][j][opp_v-2];

		/****************************************************************************/
		/*  adjust dof pointer in the edge in the common face of el and neigh and   */
		/*  the dof pointer in the sub-face child_i-child_j (allocated by neigh!)   */
		/****************************************************************************/

		if (mesh->getNumberOfDOFs(EDGE))
		  {
		    node0 = 
		      mesh->getNode(EDGE) + Tetrahedron::nChildEdge[el_type][i][dir];
		    node1 = 
		      mesh->getNode(EDGE) + Tetrahedron::nChildEdge[n_type][j][opp_v-2];

234
		    TEST_EXIT_DBG(neigh->getChild(j)->getDOF(node1))
235
236
237
238
239
240
241
242
243
244
245
		      ("no dof on neighbour %d at node %d\n", 
		       neigh->getChild(j)->getIndex(), node1);

		    (const_cast<Element*>( el->getChild(i)))->
		      setDOF(node0, const_cast<int*>( neigh->getChild(j)->getDOF(node1)));
		  }
		if (mesh->getNumberOfDOFs(FACE))
		  {
		    node0 = mesh->getNode(FACE) + i_neigh;
		    node1 = mesh->getNode(FACE) + j_neigh;

246
		    TEST_EXIT_DBG(neigh->getChild(j)->getDOF(node1))
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
		      ("no dof on neighbour %d at node %d\n",
		       neigh->getChild(j)->getIndex(), node1);

		    (const_cast<Element*>( el->getChild(i)))->
		      setDOF(node0, const_cast<int*>( neigh->getChild(j)->getDOF(node1)));
		  }

	      }  /*   for (i = 0; i < 2; i++)                                       */
	  }    /*   else of   if (!neigh  ||  !neigh->child[0])                   */
      }      /*   for (dir = 0; dir < 2; dir++)                                 */
  }


  int RefinementManager3d::newCoordsFct(ElInfo *el_info)
  {
    Element *el = el_info->getElement();
    int i, j, n_neigh;
    DegreeOfFreedom *edge[2];
    ElInfo *elinfo =  el_info;

    int dow = Global::getGeo(WORLD);

    Projection *projector = el_info->getProjection(0);

    if(!projector || projector->getType() != VOLUME_PROJECTION) {
      projector = el_info->getProjection(4);
    }

    if (el->getFirstChild() && projector && (!el->isNewCoordSet())) {
      WorldVector<double> *new_coord = NEW WorldVector<double>;

      for (j = 0; j < dow; j++)
	(*new_coord)[j] = (el_info->getCoord(0)[j] + el_info->getCoord(1)[j])*0.5;

      projector->project(*new_coord);

      el->setNewCoord(new_coord);
      /****************************************************************************/
      /*  now, information should be passed on to patch neighbours...             */
      /*  get the refinement patch                                                */
      /****************************************************************************/
      refList->setElement(0, el);
      refList->setElType(0, dynamic_cast<ElInfo3d*>(el_info)->getType());
      n_neigh = 1;
      for (i = 0; i < 2; i++)
	edge[i] = const_cast<int*>( el_info->getElement()->getDOF(i));
      if (getRefinePatch(&elinfo, edge, 0, refList, &n_neigh))
	{
	  /****************************************************************************/
	  /*  domain's boundary was reached while looping around the refinement edge  */
	  /****************************************************************************/
	  getRefinePatch(&elinfo, edge, 1, refList, &n_neigh);
	}
      for (i = 1; i < n_neigh; i++)            /* start with 1, as list[0]=el */
	{
	  TEST(!refList->getElement(i)->isNewCoordSet())
	    ("non-nil new_coord in el %d ref_list[%d] el %d (n_neigh=%d)\n",
	     el->getIndex(), i, refList->getElement(i)->getIndex(), n_neigh);

	  refList->getElement(i)->setNewCoord(el->getNewCoord());
	}
    }

    return 0;
  }

  void RefinementManager3d::setNewCoords()
  {
    ElInfo *el_info;

    Flag fillFlag = Mesh::CALL_EVERY_EL_PREORDER|
      Mesh::FILL_BOUND|
      Mesh::FILL_COORDS;

    if (refList)
      DELETE refList;
 
    refList = NEW RCNeighbourList(mesh->getMaxEdgeNeigh());

    fillFlag |= Mesh::FILL_NEIGH;
    el_info = stack->traverseFirst(mesh, -1, fillFlag);
    while (el_info) {
      newCoordsFct(el_info);
      el_info = stack->traverseNext(el_info);
    }
  }


  DegreeOfFreedom RefinementManager3d::refinePatch(DegreeOfFreedom *edge[2], 
						   RCNeighbourList* refineList,
						   int n_neigh, bool bound)
  {
    int    i;
    Tetrahedron *el = dynamic_cast<Tetrahedron*>(const_cast<Element*>( refineList->getElement(0)));
    /* first element in the list */
    DegreeOfFreedom *dof[3] = {NULL, NULL, NULL};

    /****************************************************************************/
    /*  get new dof's in the refinement edge                                    */
    /****************************************************************************/

    dof[0] = mesh->getDOF(VERTEX);
    mesh->incrementNumberOfVertices(1);
  
    if (mesh->getNumberOfDOFs(EDGE))
      {
	dof[1] = mesh->getDOF(EDGE);
	dof[2] = mesh->getDOF(EDGE);
      }

    for (i = 0; i < n_neigh; i++) {
      bisectTetrahedron(refineList, i, dof, edge);
    }

    /****************************************************************************/
    /*  if there are functions to interpolate data to the finer grid, do so     */
    /****************************************************************************/
    int iadmin;
    int nrAdmin = mesh->getNumberOfDOFAdmin();
    for(iadmin = 0; iadmin < nrAdmin; iadmin++) {
      ::std::list<DOFIndexedBase*>::iterator it;
      DOFAdmin* admin = const_cast<DOFAdmin*>(&mesh->getDOFAdmin(iadmin));
      ::std::list<DOFIndexedBase*>::iterator end = admin->endDOFIndexed();
      for(it = admin->beginDOFIndexed(); it != end; it++)
	(*it)->refineInterpol(*refineList, n_neigh);
    }

    if (!mesh->queryCoarseDOFs())
      {
	/****************************************************************************/
	/*  if there should be no dof information on interior leaf elements remove  */
	/*  dofs from edges, faces and the centers of parents                       */
	/****************************************************************************/
	if (mesh->getNumberOfDOFs(EDGE))
	  {
	    /****************************************************************************/
	    /*  remove dof of the midpoint of the common refinement edge                */
	    /****************************************************************************/

	    el = dynamic_cast<Tetrahedron*>(const_cast<Element*>( refineList->getElement(0)));
	    mesh->freeDOF(const_cast<int*>( el->getDOF(mesh->getNode(EDGE))), EDGE);
	  }

	if (mesh->getNumberOfDOFs(EDGE)  ||  
	    mesh->getNumberOfDOFs(FACE)  ||  
	    mesh->getNumberOfDOFs(CENTER))
	  {
	    for (i = 0; i < n_neigh; i++)
	      refineList->removeDOFParent(i);
	  }
      }


    /****************************************************************************/
    /*  update the number of edges and faces; depends whether refinement edge   */
    /*  is a boundary edge or not                                               */
    /****************************************************************************/

    if (bound)
      {
	mesh->incrementNumberOfEdges(n_neigh + 2);
	mesh->incrementNumberOfFaces(2*n_neigh + 1);
	newCoords = true;
      }
    else
      {
	mesh->incrementNumberOfEdges(n_neigh + 1);
	mesh->incrementNumberOfFaces(2*n_neigh);
      }

    return dof[0][0];
  }


  int RefinementManager3d::getRefinePatch(ElInfo **el_info, 
					  DegreeOfFreedom *edge[2], 
					  int dir,
					  RCNeighbourList* refineList, 
					  int *n_neigh)
  {
    FUNCNAME("RefinementManager3d::getRefinePatch");
    ElInfo *neigh_info;

    Tetrahedron *el, *neigh;
    int          i, j, k, opp_v = 0;
    int          edge_no, neigh_el_type;

    el = dynamic_cast<Tetrahedron*>(const_cast<Element*>( (*el_info)->getElement()));
  
    if ((*el_info)->getNeighbour(3-dir) == NULL)  {return(1);}
  
    opp_v = (*el_info)->getOppVertex(3-dir);
    neigh_info = stack->traverseNeighbour3d((*el_info), 3-dir);
    neigh_el_type = dynamic_cast<ElInfo3d*>(neigh_info)->getType();

    neigh = dynamic_cast<Tetrahedron*>(const_cast<Element*>( neigh_info->getElement()));
  
    int vertices = mesh->getGeo(VERTEX);

    while (neigh != el) {
      for (j = 0; j < vertices; j++)
	if (neigh->getDOF(j) == edge[0])  break;
      for (k = 0; k < vertices; k++)
	if (neigh->getDOF(k) == edge[1])  break;


      if(j > 3 || k > 3) {
	for (j = 0; j < vertices; j++)
	  if (mesh->associated(neigh->getDOF(j, 0), edge[0][0]))  break;
	for (k = 0; k < vertices; k++)
	  if (mesh->associated(neigh->getDOF(k, 0), edge[1][0]))  break;
	    
	if(j > 3 || k > 3) {
	  for (j = 0; j < vertices; j++)
	    if (mesh->indirectlyAssociated(neigh->getDOF(j, 0), edge[0][0]))  break;
	  for (k = 0; k < vertices; k++)
	    if (mesh->indirectlyAssociated(neigh->getDOF(k, 0), edge[1][0]))  break;
	    
465
	  TEST_EXIT_DBG(j < vertices && k < vertices)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
	    ("dof %d or dof %d not found on element %d with nodes (%d %d %d %d)\n", 
	     edge[0][0], edge[1][0], neigh->getIndex(), neigh->getDOF(0,0),
	     neigh->getDOF(1,0), neigh->getDOF(2,0), neigh->getDOF(3,0));

	}
      }

      //       LeafDataPeriodic *pd = 
      // 	dynamic_cast<LeafDataPeriodic*>(el->getElementData(PERIODIC));

      //       if(pd) {
      // 	::std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
      // 	::std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = 
      // 	  pd->getInfoList().end();
	  
      // 	for(it = pd->getInfoList().begin(); it != end; ++it) {
      // 	  if(it->periodicMode != 0) {
      // 	    PeriodicBC *periodicCondition = mesh->getPeriodicBCMap()[it->type];
      // 	    if(periodicCondition) {
      // 	      VertexVector *associated = mesh->getPeriodicAssociations()[it->type];
      // 	      for (j = 0; j < vertices; j++)
      // 		if (neigh->getDOF(j, 0) == (*associated)[edge[0][0]])  break;
      // 	      for (k = 0; k < vertices; k++)
      // 		if (neigh->getDOF(k, 0) == (*associated)[edge[1][0]])  break;
	      
491
      // 	      TEST_EXIT_DBG(j < vertices && k < vertices)
492
493
494
495
496
497
498
499
500
501
502
      // 		("dof %d or dof %d not found on element %d with nodes (%d %d %d %d)\n", 
      // 		 edge[0][0], edge[1][0], neigh->getIndex(), neigh->getDOF(0,0),
      // 		 neigh->getDOF(1,0), neigh->getDOF(2,0), neigh->getDOF(3,0));

      // 	    } else {
      // 	      ERROR_EXIT("???\n");
      // 	    }
      // 	  }
      // 	}
      //       }

503
      TEST_EXIT_DBG(j <  mesh->getGeo(VERTEX) &&
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
		k < mesh->getGeo(VERTEX))
	("dof %d or dof %d not found on element %d with nodes (%d %d %d %d)\n", 
	 edge[0][0], edge[1][0], neigh->getIndex(), neigh->getDOF(0,0),
	 neigh->getDOF(1,0), neigh->getDOF(2,0), neigh->getDOF(3,0));

      if ((edge_no = Tetrahedron::edgeOfDOFs[j][k]))
	{
	  /****************************************************************************/
	  /*  neigh has not a compatible refinement edge                              */
	  /****************************************************************************/
	  neigh->setMark(max(neigh->getMark(), 1));
	  neigh_info = refineFunction(neigh_info);

	  /****************************************************************************/
	  /*  now, go to a child at the edge and determine the opposite vertex for    */
	  /*  this child; continue the looping around the edge with this element      */
	  /****************************************************************************/

	  neigh_info = stack->traverseNext(neigh_info);
	  neigh_el_type = dynamic_cast<ElInfo3d*>(neigh_info)->getType();

	  switch (edge_no)
	    {
	    case 1: 
	      opp_v = opp_v == 1 ? 3 : 2;
	      break;
	    case 2: 
	      opp_v = opp_v == 2 ? 1 : 3;
	      break;
	    case 3: 
	      neigh_info = stack->traverseNext(neigh_info);
	      neigh_el_type = dynamic_cast<ElInfo3d*>(neigh_info)->getType();
	      if (neigh_el_type != 1)
		opp_v = opp_v == 0 ? 3 : 2;
	      else
		opp_v = opp_v == 0 ? 3 : 1;
	      break;
	    case 4:
	      neigh_info = stack->traverseNext(neigh_info);
	      neigh_el_type = dynamic_cast<ElInfo3d*>(neigh_info)->getType();
	      if (neigh_el_type != 1)
		opp_v = opp_v == 0 ? 3 : 1;
	      else
		opp_v = opp_v == 0 ? 3 : 2;
	      break;
	    case 5:
	      if (neigh_el_type != 1)
		{
		  neigh_info = stack->traverseNext(neigh_info);
		  neigh_el_type = (dynamic_cast<ElInfo3d*>(neigh_info))->getType();
		}
	      opp_v = 3;
	      break;
	    }
	  neigh = dynamic_cast<Tetrahedron*>(const_cast<Element*>( neigh_info->getElement()));
	}
      else
	{
	  /****************************************************************************/
	  /*  neigh is compatible devisible; put neigh to the list of patch elements; */
	  /*  go to next neighbour                                                    */
	  /****************************************************************************/
566
	  TEST_EXIT_DBG(*n_neigh < mesh->getMaxEdgeNeigh())
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
	    ("too many neighbours %d in refine patch\n", *n_neigh);

      
	  refineList->setElement(*n_neigh, neigh);
	  refineList->setElType(*n_neigh, neigh_el_type);

	  /****************************************************************************/
	  /*  we have to go back to the starting element via opp_v values             */
	  /*  correct information is produce by get_neigh_on_patch()                  */
	  /****************************************************************************/
	  refineList->setOppVertex(*n_neigh, 0, opp_v); 

	  ++*n_neigh;

	  if (opp_v != 3)
	    i = 3;
	  else
	    i = 2;

	  if (neigh_info->getNeighbour(i))
	    {
	      opp_v = neigh_info->getOppVertex(i);
	      neigh_info = stack->traverseNeighbour3d(neigh_info, i);
	      neigh_el_type = (dynamic_cast<ElInfo3d*>(neigh_info))->getType();
	      neigh = dynamic_cast<Tetrahedron*>(const_cast<Element*>( neigh_info->getElement()));
	    }
	  else
	    break;
	}
    }

    if (neigh == el)
      {
	(*el_info) = neigh_info;
	return(0);
      }

    /****************************************************************************/
    /*  the domain's boundary is reached; loop back to the starting el          */
    /****************************************************************************/

    i = *n_neigh-1;
    opp_v = refineList->getOppVertex(i, 0);
    do
      {
612
	TEST_EXIT_DBG(neigh_info->getNeighbour(opp_v)  &&  i > 0)
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
	  ("while looping back domains boundary was reached or i == 0\n");
	opp_v = refineList->getOppVertex(i--, 0);
	neigh_info = stack->traverseNeighbour3d(neigh_info, opp_v);
      } while(neigh_info->getElement() != el);
    (*el_info) = neigh_info;

    return(1);
  }


  ElInfo* RefinementManager3d::refineFunction(ElInfo* el_info)
  {
    FUNCNAME("RefinementManager3d::refineFunction()");
    int              n_neigh, bound = false;
    DegreeOfFreedom  *edge[2];
    RCNeighbourList  *ref_list;

    if (el_info->getElement()->getMark() <= 0)  
      return(el_info);    /*   element may not be refined   */

    /****************************************************************************/
    /*  get memory for a list of all elements at the refinement edge            */
    /****************************************************************************/
    ref_list = NEW RCNeighbourList(mesh->getMaxEdgeNeigh());
    ref_list->setElType(0, (dynamic_cast<ElInfo3d*>(el_info))->getType());
    ref_list->setElement(0, el_info->getElement());
    n_neigh = 1;

    /****************************************************************************/
    /*  give the refinement edge the right orientation                          */
    /****************************************************************************/

    if (el_info->getElement()->getDOF(0,0) < el_info->getElement()->getDOF(1,0))
      {
	edge[0] = const_cast<int*>( el_info->getElement()->getDOF(0));
	edge[1] = const_cast<int*>( el_info->getElement()->getDOF(1));
      }
    else
      {
	edge[1] = const_cast<int*>( el_info->getElement()->getDOF(0));
	edge[0] = const_cast<int*>( el_info->getElement()->getDOF(1));
      }

    /****************************************************************************/
    /*  get the refinement patch                                                */
    /****************************************************************************/
    //   MSG("index %d\n", el_info->getElement()->getIndex());
    if (getRefinePatch(&el_info, edge, 0, ref_list, &n_neigh))
      {
	/****************************************************************************/
	/*  domain's boundary was reached while looping around the refinement edge  */
	/****************************************************************************/
	getRefinePatch(&el_info, edge, 1, ref_list, &n_neigh);
	bound = true;
      }

    /****************************************************************************/
    /*  fill neighbour information inside the patch in the refinement list      */
    /****************************************************************************/
    ref_list->getNeighOnPatch(n_neigh, bound);

    // ==========================================================================
    // === check for periodic boundary ==========================================
    // ==========================================================================

    DegreeOfFreedom *next_edge[2];
    DegreeOfFreedom *first_edge[2] = {edge[0], edge[1]};
    DegreeOfFreedom *last_edge[2] = {NULL, NULL};
    int n_neigh_periodic;

    DegreeOfFreedom newDOF = -1;
    DegreeOfFreedom lastNewDOF = -1;
    DegreeOfFreedom firstNewDOF = -1;

    RCNeighbourList *periodicList;
    ::std::map<int, VertexVector*>::iterator it;
    ::std::map<int, VertexVector*>::iterator end = mesh->getPeriodicAssociations().end();

    //   for(int i = 0; i < n_neigh; i++) {
    //     MSG("%d ", ref_list->getElement(i)->getIndex());
    //   }
    //   MSG("\n");

    while(edge[0] != NULL) {
      periodicList = ref_list->periodicSplit(edge, 
					     next_edge,
					     &n_neigh,
					     &n_neigh_periodic);

702
      TEST_EXIT_DBG(periodicList)("periodicList = NULL\n");
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

      newDOF = 
	refinePatch(edge, periodicList, n_neigh_periodic, bound);

      if(firstNewDOF == -1) {
	firstNewDOF = newDOF;
      }

      if(lastNewDOF != -1) {
	for(it = mesh->getPeriodicAssociations().begin(); it != end; ++it) {
	  if(it->second) {
	    if(((*(it->second))[edge[0][0]] == last_edge[0][0] &&
		(*(it->second))[edge[1][0]] == last_edge[1][0]) || 
	       ((*(it->second))[edge[0][0]] == last_edge[1][0] &&
		(*(it->second))[edge[1][0]] == last_edge[0][0]))
	      {
		(*(it->second))[lastNewDOF] = newDOF;
		(*(it->second))[newDOF] = lastNewDOF;
	      } 
	  }
	}
      }
      lastNewDOF = newDOF;

      last_edge[0] = edge[0];
      last_edge[1] = edge[1];

      edge[0] = next_edge[0];
      edge[1] = next_edge[1];
    }

    if(lastNewDOF != firstNewDOF) {
      for(it = mesh->getPeriodicAssociations().begin(); it != end; ++it) {
	if(it->second) {
	  if(((*(it->second))[first_edge[0][0]] == last_edge[0][0] &&
	      (*(it->second))[first_edge[1][0]] == last_edge[1][0]) || 
	     ((*(it->second))[first_edge[0][0]] == last_edge[1][0] &&
	      (*(it->second))[first_edge[1][0]] == last_edge[0][0]))
	    {
	      (*(it->second))[lastNewDOF] = firstNewDOF;
	      (*(it->second))[firstNewDOF] = lastNewDOF;
	    }
	}
      }
    }
  

    /****************************************************************************/
    /*  and now refine the patch                                                */
    /****************************************************************************/
    //refinePatch(edge, ref_list, n_neigh, bound);

    stack->update();

    DELETE ref_list;

    return(el_info);
  }

}