ParallelDomainProblem.cc 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#include "ParallelDomainProblem.h"
#include "ProblemScal.h"
#include "ProblemInstat.h"
#include "ParMetisPartitioner.h"
#include "Mesh.h"
#include "Traverse.h"
#include "ElInfo.h"
#include "Element.h"
#include "MacroElement.h"
#include "PartitionElementData.h"
11
12
#include "DOFMatrix.h"
#include "DOFVector.h"
13
14
15
#include "VtkWriter.h"

#include "petscksp.h"
16
17
18
19

namespace AMDiS {

  ParallelDomainProblemBase::ParallelDomainProblemBase(const std::string& name,
20
21
						       ProblemIterationInterface *iIF,
						       ProblemTimeInterface *tIF,
22
						       FiniteElemSpace *fe)
23
24
    : iterationIF(iIF),
      timeIF(tIF),
25
26
      feSpace(fe),
      mesh(fe->getMesh()),
27
      initialPartitionMesh(true),
28
      nRankDOFs(0)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
  {
    mpiRank = MPI::COMM_WORLD.Get_rank();
    mpiSize = MPI::COMM_WORLD.Get_size();
    mpiComm = MPI::COMM_WORLD;
    partitioner = new ParMetisPartitioner(mesh, &mpiComm);
  }

  void ParallelDomainProblemBase::initParallelization(AdaptInfo *adaptInfo)
  {
    if (mpiSize <= 1)
      return;

    // create an initial partitioning of the mesh
    partitioner->createPartitionData();
    // set the element weights, which are 1 at the very first begin
    setElemWeights(adaptInfo);
    // and now partition the mesh
    partitionMesh(adaptInfo);   


Thomas Witkowski's avatar
Thomas Witkowski committed
49
50
51
    /// === Determine to each dof the set of partitions the dof belongs to. ===

    std::map<const DegreeOfFreedom*, std::set<int> > partitionDofs;
52
53
54
55
    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL);
    while (elInfo) {
      Element *element = elInfo->getElement();
56
57
58

      // Determine to each dof the partition(s) it corresponds to.
      for (int i = 0; i < 3; i++) 
Thomas Witkowski's avatar
Thomas Witkowski committed
59
	partitionDofs[element->getDOF(i)].insert(partitionVec[element->getIndex()]);
60
          
61
62
63
      elInfo = stack.traverseNext(elInfo);
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
64
65
66
67
    /// === Determine the set of ranks dofs and the dofs ownership at the boundary. ===

    std::vector<const DegreeOfFreedom*> rankDofs;
    for (std::map<const DegreeOfFreedom*, std::set<int> >::iterator it = partitionDofs.begin();
68
69
70
71
72
73
74
75
76
	 it != partitionDofs.end();
	 ++it) {
      for (std::set<int>::iterator itpart1 = it->second.begin();
	   itpart1 != it->second.end();
	   ++itpart1) {
	if (*itpart1 == mpiRank) {
	  if (it->second.size() == 1) {
	    rankDofs.push_back(it->first);
	  } else {	    
Thomas Witkowski's avatar
Thomas Witkowski committed
77
78
79
	    // This dof is at the ranks boundary. It is owned by the rank only if
	    // the rank number is the highest of all ranks containing this dof.

80
	    bool insert = true;
Thomas Witkowski's avatar
Thomas Witkowski committed
81
	    int highestRank = mpiRank;
82
83
84
	    for (std::set<int>::iterator itpart2 = it->second.begin();
		 itpart2 != it->second.end();
		 ++itpart2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
85
	      if (*itpart2 > mpiRank)
86
		insert = false;
Thomas Witkowski's avatar
Thomas Witkowski committed
87
88
89

	      if (*itpart2 > highestRank)
		highestRank = *itpart2;
90
	    }
Thomas Witkowski's avatar
Thomas Witkowski committed
91
92

	    if (insert)
93
	      rankDofs.push_back(it->first);
Thomas Witkowski's avatar
Thomas Witkowski committed
94
95

	    boundaryDofs[it->first] = highestRank;
96
97
98
99
100
	  }
	}
      }
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    // === Create interior boundary information ===

    elInfo = stack.traverseFirst(mesh, -1, Mesh::CALL_LEAF_EL | Mesh::FILL_NEIGH);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // Hidde elements which are not part of ranks partition.
      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>(element->getElementData(PARTITION_ED));   
      if (partitionData->getPartitionStatus() == IN) {
	for (int i = 0; i < 3; i++) {
	  if (!elInfo->getNeighbour(i))
	    continue;

	  PartitionElementData *neighbourPartitionData =
	    dynamic_cast<PartitionElementData*>(elInfo->getNeighbour(i)->getElementData(PARTITION_ED));
 	  if (neighbourPartitionData->getPartitionStatus() == OUT) {
 	    AtomicBoundary& bound = interiorBoundary.
	      getNewAtomicBoundary(partitionVec[elInfo->getNeighbour(i)->getIndex()]);
 	    bound.rankObject.el = element;
 	    bound.rankObject.subObjAtBoundary = EDGE;
 	    bound.rankObject.ithObjAtBoundary = i;
 	    bound.neighbourObject.el = elInfo->getNeighbour(i);
 	    bound.neighbourObject.subObjAtBoundary = EDGE;
 	    bound.neighbourObject.ithObjAtBoundary = -1;
 	  }
	}
      }

      elInfo = stack.traverseNext(elInfo);
Thomas Witkowski's avatar
Thomas Witkowski committed
132
133
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
134

135
136
    // === Remove all macro elements that are not part of the rank partition. ===

137
138
139
140
141
142
143
    std::vector<MacroElement*> macrosToRemove;
    for (std::deque<MacroElement*>::iterator it = mesh->firstMacroElement();
	 it != mesh->endOfMacroElements();
	 ++it) {
      PartitionElementData *partitionData = 
	dynamic_cast<PartitionElementData*>
	((*it)->getElement()->getElementData(PARTITION_ED));
144
      if (partitionData->getPartitionStatus() != IN)
145
146
147
148
149
	macrosToRemove.push_back(*it);
    }

    mesh->removeMacroElements(macrosToRemove);

150
151
    // === Create local and global dofs ordering. ===

152
153
154
    int *gOrder = (int*)(malloc(sizeof(int) * rankDofs.size()));
    int *lOrder = (int*)(malloc(sizeof(int) * rankDofs.size()));

Thomas Witkowski's avatar
Thomas Witkowski committed
155
    for (std::vector<const DegreeOfFreedom*>::iterator it = rankDofs.begin();
156
	 it != rankDofs.end(); ++it)
Thomas Witkowski's avatar
Thomas Witkowski committed
157
      gOrder[nRankDOFs++] = (*it)[0];
158
159
160

    int rstart = 0;
    MPI_Scan(&nRankDOFs, &rstart, 1, MPI_INT, MPI_SUM, PETSC_COMM_WORLD);
161
    rstart -= nRankDOFs;
Thomas Witkowski's avatar
Thomas Witkowski committed
162
   
163
    for (int i = 0; i < nRankDOFs; i++)
164
      lOrder[i] = rstart + i;
165
166

    AOCreateBasic(PETSC_COMM_WORLD, nRankDOFs, gOrder, lOrder, &applicationOrdering);
Thomas Witkowski's avatar
Thomas Witkowski committed
167
    
168
169
    free(gOrder);
    free(lOrder);
Thomas Witkowski's avatar
Thomas Witkowski committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

    /// === Create information which dof indices must be send and which must be received. ===

    std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> > sendNewDofs;
    std::map<int, std::vector<DegreeOfFreedom> > recvNewDofs;

    for (std::map<const DegreeOfFreedom*, int>::iterator it = boundaryDofs.begin();
	 it != boundaryDofs.end();
	 ++it) {
      if (it->second == mpiRank) {
	int oldDofIndex = (it->first)[0];
	int newDofIndex = 0;
	for (int i = 0; i < static_cast<int>(rankDofs.size()); i++) {
	  if (rankDofs[i] == it->first) {
	    newDofIndex = rstart + i;
	    break;
	  }
	}

	for (std::set<int>::iterator itRanks = partitionDofs[it->first].begin();
	     itRanks != partitionDofs[it->first].end();
	     ++itRanks) {
192
	  if (*itRanks != mpiRank)
Thomas Witkowski's avatar
Thomas Witkowski committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
	    sendNewDofs[*itRanks][oldDofIndex] = newDofIndex;
	}
      } else {
	recvNewDofs[it->second].push_back((it->first)[0]);
      }
    }

    /// === Send and receive the dof indices at boundary. ===

    std::vector<int*> sendBuffers(sendNewDofs.size());
    std::vector<int*> recvBuffers(recvNewDofs.size());
    
    int i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) {
      sendBuffers[i] = new int[sendIt->second.size() * 2];
      int c = 0;
      for (std::map<DegreeOfFreedom, DegreeOfFreedom>::iterator dofIt = sendIt->second.begin();
	   dofIt != sendIt->second.end();
	   ++dofIt, c += 2) {
	sendBuffers[i][c] = dofIt->first;
	sendBuffers[i][c + 1] = dofIt->second;
      }

      mpiComm.Isend(sendBuffers[i], sendIt->second.size() * 2, MPI_INT, sendIt->first, 0);
    }

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {
      recvBuffers[i] = new int[recvIt->second.size() * 2];
      
      mpiComm.Irecv(recvBuffers[i], recvIt->second.size() * 2, MPI_INT, recvIt->first, 0);
    }


    mpiComm.Barrier();

    /// === Change dof indices at boundary from other ranks. ===

    i = 0;
    for (std::map<int, std::vector<DegreeOfFreedom> >::iterator recvIt = recvNewDofs.begin();
	 recvIt != recvNewDofs.end();
	 ++recvIt, i++) {

      for (int j = 0; j < static_cast<int>(recvIt->second.size()); j++) {
	for (std::map<const DegreeOfFreedom*, int>::iterator dofIt = boundaryDofs.begin();
	     dofIt != boundaryDofs.end();
	     ++dofIt) {
	  if ((dofIt->first)[0] == recvBuffers[i][j * 2]) {
	    const_cast<DegreeOfFreedom*>(dofIt->first)[0] = recvBuffers[i][j * 2 + 1];
	    break;
	  }
	}
      }

      delete [] recvBuffers[i];
    }

    i = 0;
    for (std::map<int, std::map<DegreeOfFreedom, DegreeOfFreedom> >::iterator sendIt = sendNewDofs.begin();
	 sendIt != sendNewDofs.end();
	 ++sendIt, i++) {
      delete [] sendBuffers[i];
    }

    /// === Change dof indices for rank partition. ===

263
264
    for (int i = 0; i < static_cast<int>(rankDofs.size()); i++) 
      const_cast<DegreeOfFreedom*>(rankDofs[i])[0] = rstart + i;    
265
266
267
268
269
270
271
272
273
274
275

    /// === Create petsc matrix. ===
    int ierr;
    ierr = MatCreate(PETSC_COMM_WORLD, &petscMatrix);
    ierr = MatSetSizes(petscMatrix, rankDofs.size(), rankDofs.size(),
		       partitionDofs.size(), partitionDofs.size());
    ierr = MatSetType(petscMatrix, MATAIJ);

    ierr = VecCreate(PETSC_COMM_WORLD, &petscRhsVec);
    ierr = VecSetSizes(petscRhsVec, rankDofs.size(), partitionDofs.size());    
    ierr = VecSetType(petscRhsVec, VECMPI);
276
277
278
279

    ierr = VecCreate(PETSC_COMM_WORLD, &petscSolVec);
    ierr = VecSetSizes(petscSolVec, rankDofs.size(), partitionDofs.size());    
    ierr = VecSetType(petscSolVec, VECMPI);
280
281
282
283
  }

  void ParallelDomainProblemBase::exitParallelization(AdaptInfo *adaptInfo)
  {
284
    AODestroy(applicationOrdering);
285
286
  }

287
288
289
  void ParallelDomainProblemBase::fillPetscMatrix(DOFMatrix *mat, 
						  DOFVector<double> *vec)
  {
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    using mtl::tag::major; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits= mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::row<Matrix>::type row(mat->getBaseMatrix());
    traits::col<Matrix>::type col(mat->getBaseMatrix());
    traits::const_value<Matrix>::type value(mat->getBaseMatrix());

    typedef traits::range_generator<major, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    std::cout.precision(10);
    for (cursor_type cursor = begin<major>(mat->getBaseMatrix()), cend = end<major>(mat->getBaseMatrix()); cursor != cend; ++cursor)
      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); icursor != icend; ++icursor)
	if (value(*icursor) != 0.0) {
	  int r = row(*icursor);
	  int c = col(*icursor);
	  double v = value(*icursor);
	  MatSetValues(petscMatrix, 1, &r, 1, &c, &v, ADD_VALUES);
309
	}
310

311
312
313
314
315
316
317
318
319
320

    MatAssemblyBegin(petscMatrix, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(petscMatrix, MAT_FINAL_ASSEMBLY);

    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    for (dofIt.reset(); !dofIt.end(); ++dofIt) {
      int index = dofIt.getDOFIndex();
      double value = *dofIt;

      VecSetValues(petscRhsVec, 1, &index, &value, ADD_VALUES);
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    }
  }

  void ParallelDomainProblemBase::solvePetscMatrix(DOFVector<double> *vec)
  {
    KSP ksp;
    PC pc;

    KSPCreate(PETSC_COMM_WORLD, &ksp);
    KSPSetOperators(ksp, petscMatrix, petscMatrix, DIFFERENT_NONZERO_PATTERN);
    KSPGetPC(ksp, &pc);
    PCSetType(pc, PCJACOBI);
    KSPSetTolerances(ksp, 1.e-7, PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT);
    KSPSetType(ksp, KSPBCGS);
    KSPMonitorSet(ksp, KSPMonitorDefault, PETSC_NULL, 0);
    KSPSolve(ksp, petscRhsVec, petscSolVec);

    PetscScalar *vecPointer;
    VecGetArray(petscSolVec, &vecPointer);

    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    int counter = 0;
    for (dofIt.reset(); !dofIt.end(); ++dofIt)
      *vec = vecPointer[counter++];

    VecRestoreArray(petscSolVec, &vecPointer);

    std::stringstream oss;
    oss << "test" << MPI::COMM_WORLD.Get_rank() << ".vtu";
    VtkWriter::writeFile(vec, oss.str());

    std::cout << "USED SIZE = " << vec->getUsedSize() << std::endl;
353
354
  }

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  double ParallelDomainProblemBase::setElemWeights(AdaptInfo *adaptInfo) 
  {
    double localWeightSum = 0.0;
    int elNum = -1;

    elemWeights.clear();

    TraverseStack stack;
    ElInfo *elInfo = stack.traverseFirst(mesh, -1,
					 Mesh::CALL_EVERY_EL_PREORDER);
    while (elInfo) {
      Element *element = elInfo->getElement();

      // get partition data
      PartitionElementData *partitionData = dynamic_cast<PartitionElementData*>
	(element->getElementData(PARTITION_ED));

      if (partitionData && partitionData->getPartitionStatus() == IN) {
	if (partitionData->getLevel() == 0) {
	  elNum = element->getIndex();
	}
	TEST_EXIT(elNum != -1)("invalid element number\n");
	if (element->isLeaf()) {
	  elemWeights[elNum] += 1.0;
	  localWeightSum += 1.0;
	}
      }

      elInfo = stack.traverseNext(elInfo);
    }

    return localWeightSum;
  }

  void ParallelDomainProblemBase::partitionMesh(AdaptInfo *adaptInfo)
  {
    if (initialPartitionMesh) {
      initialPartitionMesh = false;
      partitioner->fillCoarsePartitionVec(&oldPartitionVec);
      partitioner->partition(&elemWeights, INITIAL);
    } else {
      oldPartitionVec = partitionVec;
      partitioner->partition(&elemWeights, ADAPTIVE_REPART, 100.0 /*0.000001*/);
    }    

    partitioner->fillCoarsePartitionVec(&partitionVec);
  }

  ParallelDomainProblemScal::ParallelDomainProblemScal(const std::string& name,
						       ProblemScal *problem,
						       ProblemInstatScal *problemInstat)
406
407
    : ParallelDomainProblemBase(name, problem, problemInstat, problem->getFESpace()),
      probScal(problem)
408
409
410
  {
  }

411
412
413
414
415
416
417
418
  Flag ParallelDomainProblemScal::oneIteration(AdaptInfo *adaptInfo, Flag toDo)
  {
    //    return iterationIF->oneIteration(adaptInfo, toDo);

    Flag flag = dynamic_cast<StandardProblemIteration*>(iterationIF)->buildAndAdapt(adaptInfo, toDo);

    fillPetscMatrix(probScal->getSystemMatrix(), probScal->getRHS());

419
420
    solvePetscMatrix(probScal->getSolution());

421
422
423
424
425
426
427
428
429
430
431
432
//     if (toDo.isSet(SOLVE))
//       iterationIF->getProblem()->solve(adaptInfo, false);

//     if (toDo.isSet(SOLVE_RHS))
//       iterationIF->getProblem()->solve(adaptInfo, true);

//     if (toDo.isSet(ESTIMATE)) 
//       iterationIF->getProblem()->estimate(adaptInfo);

    return flag;

  }
433
434

}