InteriorBoundary.cc 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


13
#include "parallel/InteriorBoundary.h"
14
#include "parallel/ElementObjectDatabase.h"
15
16
#include "FiniteElemSpace.h"
#include "BasisFunction.h"
17
#include "Serializer.h"
18
#include "VertexVector.h"
19
20

namespace AMDiS {
Thomas Witkowski's avatar
Thomas Witkowski committed
21

22
  AtomicBoundary& InteriorBoundary::getNewAtomicOwn(int rank)
Thomas Witkowski's avatar
Thomas Witkowski committed
23
  {
24
25
26
    int size = own[rank].size();
    own[rank].resize(size + 1);
    return own[rank][size];
Thomas Witkowski's avatar
Thomas Witkowski committed
27
28
  }

29
30
31
32
33
34
  AtomicBoundary& InteriorBoundary::getNewAtomicOther(int rank)
  {
    int size = other[rank].size();
    other[rank].resize(size + 1);
    return other[rank][size];
  }
35

36
  AtomicBoundary& InteriorBoundary::getNewAtomicPer(int rank)
37
  {
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    int size = periodic[rank].size();
    periodic[rank].resize(size + 1);
    return periodic[rank][size];
  }


  void InteriorBoundary::create(MPI::Intracomm &mpiComm,
				ElementObjectDatabase &elObjDb)
  { 
    FUNCNAME("InteriorBoundary::clear()");

    own.clear();
    other.clear();
    periodic.clear();

    Mesh *mesh = elObjDb.getMesh();
    TEST_EXIT_DBG(mesh)("Should not happen!\n");

    int mpiRank = mpiComm.Get_rank();
57

58
59
60
61
    // === Create interior boundary data structure. ===
    
    for (int geoPos = 0; geoPos < mesh->getDim(); geoPos++) {
      GeoIndex geoIndex = INDEX_OF_DIM(geoPos, mesh->getDim());
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
      while (elObjDb.iterate(geoIndex)) {
	map<int, ElementObjectData>& objData = elObjDb.getIterateData();
	if (!(objData.count(mpiRank) && objData.size() > 1))
	  continue;

	int owner = elObjDb.getIterateOwner();
	ElementObjectData& rankBoundEl = objData[mpiRank];
	
	AtomicBoundary bound;
	bound.maxLevel = elObjDb.getIterateMaxLevel();

	bound.rankObj.el = elObjDb.getElementPtr(rankBoundEl.elIndex);
	bound.rankObj.elIndex = rankBoundEl.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(rankBoundEl.elIndex);
	bound.rankObj.subObj = geoIndex;
	bound.rankObj.ithObj = rankBoundEl.ithObject;
79
	
80
81
82
83
84
85
86
87
	if (geoIndex == FACE) {
	  for (int edgeNo = 0; edgeNo < 3; edgeNo++) {
	    int edgeOfFace = 
	      bound.rankObj.el->getEdgeOfFace(bound.rankObj.ithObj, edgeNo);
	    
	    bound.rankObj.excludedSubstructures.push_back(make_pair(EDGE, edgeOfFace));
	  }
	}
88
	
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
	
	if (owner == mpiRank) {
	  for (map<int, ElementObjectData>::iterator it2 = objData.begin();
	       it2 != objData.end(); ++it2) {
	    if (it2->first == mpiRank)
	      continue;
	    
	    bound.neighObj.el = elObjDb.getElementPtr(it2->second.elIndex);
	    bound.neighObj.elIndex = it2->second.elIndex;
	    bound.neighObj.elType = elObjDb.getElementType(it2->second.elIndex);
	    bound.neighObj.subObj = geoIndex;
	    bound.neighObj.ithObj = it2->second.ithObject;
	    
	    bound.type = INTERIOR;
	    
	    AtomicBoundary& b = getNewAtomicOwn(it2->first);
	    b = bound;
	    if (geoIndex == EDGE)
	      b.neighObj.reverseMode = 
		elObjDb.getEdgeReverseMode(rankBoundEl, it2->second);
	    if (geoIndex == FACE)
	      b.neighObj.reverseMode = 
		elObjDb.getFaceReverseMode(rankBoundEl, it2->second);
	  }
	  
	} else {
	  TEST_EXIT_DBG(objData.count(owner) == 1)
	    ("Should not happen!\n");
117
	  
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
	  ElementObjectData& ownerBoundEl = objData[owner];
	  
	  bound.neighObj.el = elObjDb.getElementPtr(ownerBoundEl.elIndex);
	  bound.neighObj.elIndex = ownerBoundEl.elIndex;
	  bound.neighObj.elType = -1;
	  bound.neighObj.subObj = geoIndex;
	  bound.neighObj.ithObj = ownerBoundEl.ithObject;
	  
	  bound.type = INTERIOR;
	  
	  AtomicBoundary& b = getNewAtomicOther(owner);
	  b = bound;	    
	  if (geoIndex == EDGE)
	    b.rankObj.reverseMode =
	      elObjDb.getEdgeReverseMode(rankBoundEl, ownerBoundEl);
	  if (geoIndex == FACE)
	    b.rankObj.reverseMode = 
	      elObjDb.getFaceReverseMode(rankBoundEl, ownerBoundEl);
	}
137
      }
138
139
140
    }


141
    // === Create periodic boundary data structure. ===
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    for (PerBoundMap<DegreeOfFreedom>::iterator it = elObjDb.getPeriodicVertices().begin();
	 it != elObjDb.getPeriodicVertices().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perDofEl0 = 
	elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {

	int otherElementRank = elIt->first;
	ElementObjectData& perDofEl1 = elIt->second;

	AtomicBoundary bound;
	bound.rankObj.el = elObjDb.getElementPtr(perDofEl0.elIndex);
	bound.rankObj.elIndex = perDofEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perDofEl0.elIndex);
	bound.rankObj.subObj = VERTEX;
	bound.rankObj.ithObj = perDofEl0.ithObject;

	bound.neighObj.el = elObjDb.getElementPtr(perDofEl1.elIndex);
	bound.neighObj.elIndex = perDofEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perDofEl1.elIndex);
	bound.neighObj.subObj = VERTEX;
	bound.neighObj.ithObj = perDofEl1.ithObject;

	bound.type = it->second;

	AtomicBoundary& b = getNewAtomicPer(otherElementRank);
	b = bound;	    
      }
    }


    for (PerBoundMap<DofEdge>::iterator it = elObjDb.getPeriodicEdges().begin();
	 it != elObjDb.getPeriodicEdges().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perEdgeEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perEdgeEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perEdgeEl0.elIndex);
	bound.rankObj.elIndex = perEdgeEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perEdgeEl0.elIndex);
	bound.rankObj.subObj = EDGE;
	bound.rankObj.ithObj = perEdgeEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perEdgeEl1.elIndex);
	bound.neighObj.elIndex = perEdgeEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perEdgeEl1.elIndex);
	bound.neighObj.subObj = EDGE;
	bound.neighObj.ithObj = perEdgeEl1.ithObject;
	
	bound.type = it->second;
	
	AtomicBoundary& b = getNewAtomicPer(otherElementRank);
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
      }
    }


    for (PerBoundMap<DofFace>::iterator it = elObjDb.getPeriodicFaces().begin();
	 it != elObjDb.getPeriodicFaces().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      TEST_EXIT_DBG(elObjDb.getElements(it->first.first).size() == 1)
 	("Should not happen!\n");
      TEST_EXIT_DBG(elObjDb.getElements(it->first.second).size() == 1)
 	("Should not happen!\n");

      ElementObjectData& perFaceEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perFaceEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perFaceEl0.elIndex);
	bound.rankObj.elIndex = perFaceEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perFaceEl0.elIndex);
	bound.rankObj.subObj = FACE;
	bound.rankObj.ithObj = perFaceEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perFaceEl1.elIndex);
	bound.neighObj.elIndex = perFaceEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perFaceEl1.elIndex);
	bound.neighObj.subObj = FACE;
	bound.neighObj.ithObj = perFaceEl1.ithObject;
	
	bound.type = it->second;
	
	AtomicBoundary& b = getNewAtomicPer(otherElementRank);
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
      }
    }
    

    // === Once we have this information, we must care about the order of the ===
    // === atomic bounds in the three boundary handling object. Eventually    ===
    // === all the boundaries have to be in the same order on both ranks that ===
    // === share the bounday.                                                 ===

    StdMpi<vector<AtomicBoundary> > stdMpi(mpiComm);
    stdMpi.send(own);
    stdMpi.recv(other);
    stdMpi.startCommunication();


    // === The information about all neighbouring boundaries has been         ===
    // === received. So the rank tests if its own atomic boundaries are in    ===
    // === the same order. If not, the atomic boundaries are swaped to the    ===
    // === correct order.                                                     ===

    for (RankToBoundMap::iterator rankIt = other.begin();
	 rankIt != other.end(); ++rankIt) {

      // === We have received from rank "rankIt->first" the ordered list of   ===
      // === element indices. Now, we have to sort the corresponding list in  ===
      // === this rank to get the same order.                                 ===
     
      for (unsigned int j = 0; j < rankIt->second.size(); j++) {

	// If the expected object is not at place, search for it.

	BoundaryObject &recvedBound = stdMpi.getRecvData()[rankIt->first][j].rankObj;

	if ((rankIt->second)[j].neighObj != recvedBound) {
	  unsigned int k = j + 1;

	  for (; k < rankIt->second.size(); k++)
 	    if ((rankIt->second)[k].neighObj == recvedBound)
	      break;

	  // The element must always be found, because the list is just in
	  // another order.
	  TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");

	  // Swap the current with the found element.
	  AtomicBoundary tmpBound = (rankIt->second)[k];
	  (rankIt->second)[k] = (rankIt->second)[j];
	  (rankIt->second)[j] = tmpBound;	
	}
      }
    }


    // === Do the same for the periodic boundaries. ===

    if (periodic.size() > 0) {
      stdMpi.clear();

      RankToBoundMap sendBounds, recvBounds;
      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

	if (rankIt->first == mpiRank)
	  continue;

	if (rankIt->first < mpiRank)
	  sendBounds[rankIt->first] = rankIt->second;
	else
	  recvBounds[rankIt->first] = rankIt->second;	
      }

      stdMpi.send(sendBounds);
      stdMpi.recv(recvBounds);
      stdMpi.startCommunication();

      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

 	if (rankIt->first <= mpiRank)
 	  continue;
  
	for (unsigned int j = 0; j < rankIt->second.size(); j++) {
	  BoundaryObject &recvRankObj = 
	    stdMpi.getRecvData()[rankIt->first][j].rankObj;
	  BoundaryObject &recvNeighObj = 
	    stdMpi.getRecvData()[rankIt->first][j].neighObj;

	  if (periodic[rankIt->first][j].neighObj != recvRankObj ||
	      periodic[rankIt->first][j].rankObj != recvNeighObj) {
	    unsigned int k = j + 1;	    
	    for (; k < rankIt->second.size(); k++)
	      if (periodic[rankIt->first][k].neighObj == recvRankObj &&
		  periodic[rankIt->first][k].rankObj == recvNeighObj)
		break;
	    
	    // The element must always be found, because the list is just in 
	    // another order.
	    TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");
359

360
361
362
363
364
365
366
367
	    // Swap the current with the found element.
	    AtomicBoundary tmpBound = (rankIt->second)[k];
	    (rankIt->second)[k] = (rankIt->second)[j];
	    (rankIt->second)[j] = tmpBound;	
	  } 
	}
      }     
    } // periodicBoundary.boundary.size() > 0
368
369
370
  }


371
372
  void InteriorBoundary::serialize(std::ostream &out)
  {
373
374
    FUNCNAME("InteriorBoundary::serialize()");

375
376
377
    ERROR_EXIT("REWRITE TO MULTILEVEL STRUCTURE!\n");

#if 0
378
    int mSize = boundary.size();
379
    SerUtil::serialize(out, mSize);
380
381
    for (RankToBoundMap::iterator it = boundary.begin(); 
	 it != boundary.end(); ++it) {
382
383
      int rank = it->first;
      int boundSize = it->second.size();
384
385
      SerUtil::serialize(out, rank);
      SerUtil::serialize(out, boundSize);
386
387
388
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = (it->second)[i];

389
	SerUtil::serialize(out, bound.rankObj.elIndex);
390
	SerUtil::serialize(out, bound.rankObj.elType);
391
392
	SerUtil::serialize(out, bound.rankObj.subObj);
	SerUtil::serialize(out, bound.rankObj.ithObj);
393
	SerUtil::serialize(out, bound.rankObj.reverseMode);
394
	serializeExcludeList(out, bound.rankObj.excludedSubstructures);
395

396
	SerUtil::serialize(out, bound.neighObj.elIndex);
397
	SerUtil::serialize(out, bound.neighObj.elType);
398
399
	SerUtil::serialize(out, bound.neighObj.subObj);
	SerUtil::serialize(out, bound.neighObj.ithObj);
400
	SerUtil::serialize(out, bound.neighObj.reverseMode);
401
	serializeExcludeList(out, bound.neighObj.excludedSubstructures);
402
403

	SerUtil::serialize(out, bound.type);
404
405
      }
    }
406
#endif
407
408
  }

409

410
411
  void InteriorBoundary::deserialize(std::istream &in, 
				     std::map<int, Element*> &elIndexMap)
412
  {
413
414
    FUNCNAME("InteriorBoundary::deserialize()");

415
416
417
    ERROR_EXIT("REWRITE TO MULTILEVEL STRUCTURE!\n");

#if 0
418
    int mSize = 0;
419
    SerUtil::deserialize(in, mSize);
420
421
422
    for (int i = 0; i < mSize; i++) {
      int rank = 0;
      int boundSize = 0;
423
424
      SerUtil::deserialize(in, rank);
      SerUtil::deserialize(in, boundSize);
425
426
427
428
429

      boundary[rank].resize(boundSize);
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = boundary[rank][i];

430
	SerUtil::deserialize(in, bound.rankObj.elIndex);
431
	SerUtil::deserialize(in, bound.rankObj.elType);
432
433
	SerUtil::deserialize(in, bound.rankObj.subObj);
	SerUtil::deserialize(in, bound.rankObj.ithObj);
434
	SerUtil::deserialize(in, bound.rankObj.reverseMode);
435
	deserializeExcludeList(in, bound.rankObj.excludedSubstructures);
436

437
	SerUtil::deserialize(in, bound.neighObj.elIndex);
438
	SerUtil::deserialize(in, bound.neighObj.elType);
439
440
	SerUtil::deserialize(in, bound.neighObj.subObj);
	SerUtil::deserialize(in, bound.neighObj.ithObj);
441
	SerUtil::deserialize(in, bound.neighObj.reverseMode);
442
	deserializeExcludeList(in, bound.neighObj.excludedSubstructures);
443

444
445
	SerUtil::deserialize(in, bound.type);

446
447
448
449
	TEST_EXIT_DBG(elIndexMap.count(bound.rankObj.elIndex) == 1)
	  ("Cannot find element with index %d for deserialization!\n", 
	   bound.rankObj.elIndex);

450
451
452
	TEST_EXIT_DBG(elIndexMap[bound.rankObj.elIndex]->getIndex() == 
		      bound.rankObj.elIndex)("Should not happen!\n");

453
	bound.rankObj.el = elIndexMap[bound.rankObj.elIndex];
454

455
456
457
	// For the case of periodic interior boundaries, a rank may have an
	// boundary with itself. In this case, also the pointer to the neighbour
	//  object must be set correctly.
458
459
460
461
	if (elIndexMap.count(bound.neighObj.elIndex))
	  bound.neighObj.el = elIndexMap[bound.neighObj.elIndex];
	else
	  bound.neighObj.el = NULL;
462
463
      }
    }
464
#endif
465
  }
466
467


468
469
  void InteriorBoundary::serializeExcludeList(std::ostream &out, 
					      ExcludeList &list)
470
471
472
473
474
475
476
477
478
479
  {
    int size = list.size();
    SerUtil::serialize(out, size);
    for (int i = 0; i < size; i++) {
      SerUtil::serialize(out, list[i].first);
      SerUtil::serialize(out, list[i].second);
    }
  }


480
481
  void InteriorBoundary::deserializeExcludeList(std::istream &in, 
						ExcludeList &list)
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
  {
    int size = 0;
    SerUtil::deserialize(in, size);
    list.resize(0);
    list.reserve(size);

    for (int i = 0; i < size; i++) {
      GeoIndex a;
      int b;

      SerUtil::deserialize(in, a);
      SerUtil::deserialize(in, b);
      list.push_back(std::make_pair(a, b));
    }
  }

498
}