InteriorBoundary.cc 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


13
#include "parallel/InteriorBoundary.h"
14
#include "parallel/ElementObjectDatabase.h"
15
16
#include "FiniteElemSpace.h"
#include "BasisFunction.h"
17
#include "Serializer.h"
18
#include "VertexVector.h"
19
20

namespace AMDiS {
Thomas Witkowski's avatar
Thomas Witkowski committed
21

22
23
24
  using namespace std;


25
26
27
28
29
30
31
32
33
34
35
36
37
  void InteriorBoundary::create(MPI::Intracomm &mpiComm,
				ElementObjectDatabase &elObjDb)
  { 
    FUNCNAME("InteriorBoundary::clear()");

    own.clear();
    other.clear();
    periodic.clear();

    Mesh *mesh = elObjDb.getMesh();
    TEST_EXIT_DBG(mesh)("Should not happen!\n");

    int mpiRank = mpiComm.Get_rank();
38

39
40
41
42
    // === Create interior boundary data structure. ===
    
    for (int geoPos = 0; geoPos < mesh->getDim(); geoPos++) {
      GeoIndex geoIndex = INDEX_OF_DIM(geoPos, mesh->getDim());
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
      while (elObjDb.iterate(geoIndex)) {
	map<int, ElementObjectData>& objData = elObjDb.getIterateData();
	if (!(objData.count(mpiRank) && objData.size() > 1))
	  continue;

	int owner = elObjDb.getIterateOwner();
	ElementObjectData& rankBoundEl = objData[mpiRank];
	
	AtomicBoundary bound;
	bound.maxLevel = elObjDb.getIterateMaxLevel();
	bound.rankObj.el = elObjDb.getElementPtr(rankBoundEl.elIndex);
	bound.rankObj.elIndex = rankBoundEl.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(rankBoundEl.elIndex);
	bound.rankObj.subObj = geoIndex;
	bound.rankObj.ithObj = rankBoundEl.ithObject;
59
	
60
61
62
63
64
65
66
67
	if (geoIndex == FACE) {
	  for (int edgeNo = 0; edgeNo < 3; edgeNo++) {
	    int edgeOfFace = 
	      bound.rankObj.el->getEdgeOfFace(bound.rankObj.ithObj, edgeNo);
	    
	    bound.rankObj.excludedSubstructures.push_back(make_pair(EDGE, edgeOfFace));
	  }
	}
68
	
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
	
	if (owner == mpiRank) {
	  for (map<int, ElementObjectData>::iterator it2 = objData.begin();
	       it2 != objData.end(); ++it2) {
	    if (it2->first == mpiRank)
	      continue;
	    
	    bound.neighObj.el = elObjDb.getElementPtr(it2->second.elIndex);
	    bound.neighObj.elIndex = it2->second.elIndex;
	    bound.neighObj.elType = elObjDb.getElementType(it2->second.elIndex);
	    bound.neighObj.subObj = geoIndex;
	    bound.neighObj.ithObj = it2->second.ithObject;
	    
	    bound.type = INTERIOR;
	    
84
	    AtomicBoundary& b = getNewOwn(it2->first);
85
86
87
88
89
90
91
92
93
94
95
96
	    b = bound;
	    if (geoIndex == EDGE)
	      b.neighObj.reverseMode = 
		elObjDb.getEdgeReverseMode(rankBoundEl, it2->second);
	    if (geoIndex == FACE)
	      b.neighObj.reverseMode = 
		elObjDb.getFaceReverseMode(rankBoundEl, it2->second);
	  }
	  
	} else {
	  TEST_EXIT_DBG(objData.count(owner) == 1)
	    ("Should not happen!\n");
97
	  
98
99
100
101
102
103
104
105
106
107
	  ElementObjectData& ownerBoundEl = objData[owner];
	  
	  bound.neighObj.el = elObjDb.getElementPtr(ownerBoundEl.elIndex);
	  bound.neighObj.elIndex = ownerBoundEl.elIndex;
	  bound.neighObj.elType = -1;
	  bound.neighObj.subObj = geoIndex;
	  bound.neighObj.ithObj = ownerBoundEl.ithObject;
	  
	  bound.type = INTERIOR;
	  
108
	  AtomicBoundary& b = getNewOther(owner);
109
110
111
112
113
114
115
116
	  b = bound;	    
	  if (geoIndex == EDGE)
	    b.rankObj.reverseMode =
	      elObjDb.getEdgeReverseMode(rankBoundEl, ownerBoundEl);
	  if (geoIndex == FACE)
	    b.rankObj.reverseMode = 
	      elObjDb.getFaceReverseMode(rankBoundEl, ownerBoundEl);
	}
117
      }
118
119
120
    }


121
    // === Create periodic boundary data structure. ===
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    for (PerBoundMap<DegreeOfFreedom>::iterator it = elObjDb.getPeriodicVertices().begin();
	 it != elObjDb.getPeriodicVertices().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perDofEl0 = 
	elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {

	int otherElementRank = elIt->first;
	ElementObjectData& perDofEl1 = elIt->second;

	AtomicBoundary bound;
	bound.rankObj.el = elObjDb.getElementPtr(perDofEl0.elIndex);
	bound.rankObj.elIndex = perDofEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perDofEl0.elIndex);
	bound.rankObj.subObj = VERTEX;
	bound.rankObj.ithObj = perDofEl0.ithObject;

	bound.neighObj.el = elObjDb.getElementPtr(perDofEl1.elIndex);
	bound.neighObj.elIndex = perDofEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perDofEl1.elIndex);
	bound.neighObj.subObj = VERTEX;
	bound.neighObj.ithObj = perDofEl1.ithObject;

	bound.type = it->second;

152
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
	b = bound;	    
      }
    }


    for (PerBoundMap<DofEdge>::iterator it = elObjDb.getPeriodicEdges().begin();
	 it != elObjDb.getPeriodicEdges().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perEdgeEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perEdgeEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perEdgeEl0.elIndex);
	bound.rankObj.elIndex = perEdgeEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perEdgeEl0.elIndex);
	bound.rankObj.subObj = EDGE;
	bound.rankObj.ithObj = perEdgeEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perEdgeEl1.elIndex);
	bound.neighObj.elIndex = perEdgeEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perEdgeEl1.elIndex);
	bound.neighObj.subObj = EDGE;
	bound.neighObj.ithObj = perEdgeEl1.ithObject;
	
	bound.type = it->second;
	
186
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
      }
    }


    for (PerBoundMap<DofFace>::iterator it = elObjDb.getPeriodicFaces().begin();
	 it != elObjDb.getPeriodicFaces().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      TEST_EXIT_DBG(elObjDb.getElements(it->first.first).size() == 1)
 	("Should not happen!\n");
      TEST_EXIT_DBG(elObjDb.getElements(it->first.second).size() == 1)
 	("Should not happen!\n");

      ElementObjectData& perFaceEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perFaceEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perFaceEl0.elIndex);
	bound.rankObj.elIndex = perFaceEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perFaceEl0.elIndex);
	bound.rankObj.subObj = FACE;
	bound.rankObj.ithObj = perFaceEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perFaceEl1.elIndex);
	bound.neighObj.elIndex = perFaceEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perFaceEl1.elIndex);
	bound.neighObj.subObj = FACE;
	bound.neighObj.ithObj = perFaceEl1.ithObject;
	
	bound.type = it->second;
	
232
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
      }
    }
    

    // === Once we have this information, we must care about the order of the ===
    // === atomic bounds in the three boundary handling object. Eventually    ===
    // === all the boundaries have to be in the same order on both ranks that ===
    // === share the bounday.                                                 ===

    StdMpi<vector<AtomicBoundary> > stdMpi(mpiComm);
    stdMpi.send(own);
    stdMpi.recv(other);
    stdMpi.startCommunication();


    // === The information about all neighbouring boundaries has been         ===
    // === received. So the rank tests if its own atomic boundaries are in    ===
    // === the same order. If not, the atomic boundaries are swaped to the    ===
    // === correct order.                                                     ===

    for (RankToBoundMap::iterator rankIt = other.begin();
	 rankIt != other.end(); ++rankIt) {

      // === We have received from rank "rankIt->first" the ordered list of   ===
      // === element indices. Now, we have to sort the corresponding list in  ===
      // === this rank to get the same order.                                 ===
     
      for (unsigned int j = 0; j < rankIt->second.size(); j++) {

	// If the expected object is not at place, search for it.

	BoundaryObject &recvedBound = stdMpi.getRecvData()[rankIt->first][j].rankObj;

	if ((rankIt->second)[j].neighObj != recvedBound) {
	  unsigned int k = j + 1;

	  for (; k < rankIt->second.size(); k++)
 	    if ((rankIt->second)[k].neighObj == recvedBound)
	      break;

	  // The element must always be found, because the list is just in
	  // another order.
	  TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");

	  // Swap the current with the found element.
	  AtomicBoundary tmpBound = (rankIt->second)[k];
	  (rankIt->second)[k] = (rankIt->second)[j];
	  (rankIt->second)[j] = tmpBound;	
	}
      }
    }


    // === Do the same for the periodic boundaries. ===

    if (periodic.size() > 0) {
      stdMpi.clear();

      RankToBoundMap sendBounds, recvBounds;
      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

	if (rankIt->first == mpiRank)
	  continue;

	if (rankIt->first < mpiRank)
	  sendBounds[rankIt->first] = rankIt->second;
	else
	  recvBounds[rankIt->first] = rankIt->second;	
      }

      stdMpi.send(sendBounds);
      stdMpi.recv(recvBounds);
      stdMpi.startCommunication();

      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

 	if (rankIt->first <= mpiRank)
 	  continue;
  
	for (unsigned int j = 0; j < rankIt->second.size(); j++) {
	  BoundaryObject &recvRankObj = 
	    stdMpi.getRecvData()[rankIt->first][j].rankObj;
	  BoundaryObject &recvNeighObj = 
	    stdMpi.getRecvData()[rankIt->first][j].neighObj;

	  if (periodic[rankIt->first][j].neighObj != recvRankObj ||
	      periodic[rankIt->first][j].rankObj != recvNeighObj) {
	    unsigned int k = j + 1;	    
	    for (; k < rankIt->second.size(); k++)
	      if (periodic[rankIt->first][k].neighObj == recvRankObj &&
		  periodic[rankIt->first][k].rankObj == recvNeighObj)
		break;
	    
	    // The element must always be found, because the list is just in 
	    // another order.
	    TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");
339

340
341
342
343
344
345
346
347
	    // Swap the current with the found element.
	    AtomicBoundary tmpBound = (rankIt->second)[k];
	    (rankIt->second)[k] = (rankIt->second)[j];
	    (rankIt->second)[j] = tmpBound;	
	  } 
	}
      }     
    } // periodicBoundary.boundary.size() > 0
348
349
350
  }


351
  void InteriorBoundary::serialize(ostream &out)
352
  {
353
354
355
356
    serialize(out, own);
    serialize(out, other);
    serialize(out, periodic);
  }
357

358

359
360
361
362
363
  void InteriorBoundary::serialize(ostream &out,
				   RankToBoundMap& boundary)
  {
    FUNCNAME("InteriorBoundary::serialize()");

364
    int mSize = boundary.size();
365
    SerUtil::serialize(out, mSize);
366
367
    for (RankToBoundMap::iterator it = boundary.begin(); 
	 it != boundary.end(); ++it) {
368
369
      int rank = it->first;
      int boundSize = it->second.size();
370
371
      SerUtil::serialize(out, rank);
      SerUtil::serialize(out, boundSize);
372
373
374
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = (it->second)[i];

375
	SerUtil::serialize(out, bound.rankObj.elIndex);
376
	SerUtil::serialize(out, bound.rankObj.elType);
377
378
	SerUtil::serialize(out, bound.rankObj.subObj);
	SerUtil::serialize(out, bound.rankObj.ithObj);
379
	SerUtil::serialize(out, bound.rankObj.reverseMode);
380
	serializeExcludeList(out, bound.rankObj.excludedSubstructures);
381

382
	SerUtil::serialize(out, bound.neighObj.elIndex);
383
	SerUtil::serialize(out, bound.neighObj.elType);
384
385
	SerUtil::serialize(out, bound.neighObj.subObj);
	SerUtil::serialize(out, bound.neighObj.ithObj);
386
	SerUtil::serialize(out, bound.neighObj.reverseMode);
387
	serializeExcludeList(out, bound.neighObj.excludedSubstructures);
388
389

	SerUtil::serialize(out, bound.type);
390
391
      }
    }
392
393
  }

394

395
  void InteriorBoundary::deserialize(istream &in, Mesh *mesh)				     
396
  {
397
398
399
400
401
402
403
    map<int, Element*> elIndexMap;
    mesh->getElementIndexMap(elIndexMap);

    deserialize(in, own, elIndexMap);
    deserialize(in, other, elIndexMap);
    deserialize(in, periodic, elIndexMap);
  }
404

405

406
407
408
409
410
411
  void InteriorBoundary::deserialize(istream &in, 
				     RankToBoundMap& boundary,
				     map<int, Element*> &elIndexMap)
  {
    FUNCNAME("InteriorBoundary::deserialize()");

412
    int mSize = 0;
413
    SerUtil::deserialize(in, mSize);
414
415
416
    for (int i = 0; i < mSize; i++) {
      int rank = 0;
      int boundSize = 0;
417
418
      SerUtil::deserialize(in, rank);
      SerUtil::deserialize(in, boundSize);
419
420
421
422
423

      boundary[rank].resize(boundSize);
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = boundary[rank][i];

424
	SerUtil::deserialize(in, bound.rankObj.elIndex);
425
	SerUtil::deserialize(in, bound.rankObj.elType);
426
427
	SerUtil::deserialize(in, bound.rankObj.subObj);
	SerUtil::deserialize(in, bound.rankObj.ithObj);
428
	SerUtil::deserialize(in, bound.rankObj.reverseMode);
429
	deserializeExcludeList(in, bound.rankObj.excludedSubstructures);
430

431
	SerUtil::deserialize(in, bound.neighObj.elIndex);
432
	SerUtil::deserialize(in, bound.neighObj.elType);
433
434
	SerUtil::deserialize(in, bound.neighObj.subObj);
	SerUtil::deserialize(in, bound.neighObj.ithObj);
435
	SerUtil::deserialize(in, bound.neighObj.reverseMode);
436
	deserializeExcludeList(in, bound.neighObj.excludedSubstructures);
437

438
439
	SerUtil::deserialize(in, bound.type);

440
441
442
443
	TEST_EXIT_DBG(elIndexMap.count(bound.rankObj.elIndex) == 1)
	  ("Cannot find element with index %d for deserialization!\n", 
	   bound.rankObj.elIndex);

444
445
446
	TEST_EXIT_DBG(elIndexMap[bound.rankObj.elIndex]->getIndex() == 
		      bound.rankObj.elIndex)("Should not happen!\n");

447
	bound.rankObj.el = elIndexMap[bound.rankObj.elIndex];
448

449
450
	// For the case of periodic interior boundaries, a rank may have an
	// boundary with itself. In this case, also the pointer to the neighbour
451
	// object must be set correctly.
452
453
454
455
	if (elIndexMap.count(bound.neighObj.elIndex))
	  bound.neighObj.el = elIndexMap[bound.neighObj.elIndex];
	else
	  bound.neighObj.el = NULL;
456
457
      }
    }
458
  }
459
460


461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  AtomicBoundary& InteriorBoundary::getNewOwn(int rank)
  {
    int size = own[rank].size();
    own[rank].resize(size + 1);
    return own[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewOther(int rank)
  {
    int size = other[rank].size();
    other[rank].resize(size + 1);
    return other[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewPeriodic(int rank)
  {
    int size = periodic[rank].size();
    periodic[rank].resize(size + 1);
    return periodic[rank][size];
  }


485
  void InteriorBoundary::serializeExcludeList(ostream &out, 
486
					      ExcludeList &list)
487
488
489
490
491
492
493
494
495
496
  {
    int size = list.size();
    SerUtil::serialize(out, size);
    for (int i = 0; i < size; i++) {
      SerUtil::serialize(out, list[i].first);
      SerUtil::serialize(out, list[i].second);
    }
  }


497
  void InteriorBoundary::deserializeExcludeList(istream &in, 
498
						ExcludeList &list)
499
500
501
502
503
504
505
506
507
508
509
510
  {
    int size = 0;
    SerUtil::deserialize(in, size);
    list.resize(0);
    list.reserve(size);

    for (int i = 0; i < size; i++) {
      GeoIndex a;
      int b;

      SerUtil::deserialize(in, a);
      SerUtil::deserialize(in, b);
511
      list.push_back(make_pair(a, b));
512
513
514
    }
  }

515
}