Element.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

// ============================================================================
// ===== includes =============================================================
// ============================================================================

#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"

namespace AMDiS {

  // ============================================================================
  // ===== forward declarations =================================================
  // ============================================================================

  class Mesh;
  class DOFAdmin;
  template<typename T> class WorldVector;
  class CoarseningManager;

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  // ============================================================================
  // ===== class Element ========================================================
  // ============================================================================

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
    /** \brief
     * private standard constructor because an Element must know his Mesh
     */
    Element() {};
  public:
    /** \brief
     * constructs an Element which belongs to Mesh
     */
    Element(Mesh *);

    /** \brief
     * copy constructor
     */
    Element(const Element& old);

    /** \brief
     * destructor
     */ 
    virtual ~Element();

    // ===== getting methods ======================================================

    /** \name getting methods
     * \{
     */

    /** \brief
     * Returns \ref child[0]
     */
113
    inline Element* getFirstChild() const {
114
      return child[0];
115
    }
116 117 118 119

    /** \brief
     * Returns \ref child[1]
     */
120
    inline Element* getSecondChild() const {
121
      return child[1];
122
    }
123 124 125 126

    /** \brief
     * Returns \ref child[i], i=0,1
     */
127
    inline Element* getChild(int i) const {
128
      TEST_EXIT_DBG(i==0 || i==1)("i must be 0 or 1\n");
129
      return child[i];
130
    }
131 132 133 134 135

    /** \brief
     * Returns true if Element is a leaf element (\ref child[0] == NULL), returns
     * false otherwise.
     */
136
    inline const bool isLeaf() const { 
137
      return (child[0] == NULL); 
138
    }
139 140 141 142

    /** \brief
     * Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
     */
143 144
    const DegreeOfFreedom getDOF(int i, int j) const { 
      return dof[i][j];
145
    }
146 147 148 149

    /** \brief
     * Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
     */
150 151
    const DegreeOfFreedom* getDOF(int i) const {
      return dof[i];
152
    }
153 154 155 156 157 158

    /** \brief
     * Returns a pointer to the DOFs of this Element
     */
    const DegreeOfFreedom** getDOF() const {
      return const_cast<const DegreeOfFreedom**>(dof);
159
    }
160 161 162 163

    /** \brief
     * Returns \ref mesh of Element
     */
164 165
    inline Mesh* getMesh() const { 
      return mesh; 
166
    }
167 168 169 170 171 172 173

    /** \brief
     * Returns \ref elementData's error estimation, if Element is a leaf element
     * and has leaf data. 
     */
    inline double getEstimation(int row) const
    {
174
      if (isLeaf()) {
175
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
176
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
177
	TEST_EXIT_DBG(ld)("leaf data not estimatable!\n");
178

179 180 181 182
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
183
    }
184 185 186 187 188 189

    /** \brief
     * Returns Element's coarsening error estimation, if Element is a leaf 
     * element and if it has leaf data and if this leaf data are coarsenable.
     */
    inline double getCoarseningEstimation(int row) {
190
      if (isLeaf()) {
191
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
192
	ElementData *ld = elementData->getElementData(COARSENABLE);
193
	TEST_EXIT_DBG(ld)("element data not coarsenable!\n");
194

195
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
196
      }
197 198
      
      return 0.0;
199
    }
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    /** \brief
     * Returns region of element if defined, -1 else.
     */
    int getRegion() const;

    /** \brief
     * Returns local vertex number of the j-th vertex of the i-th edge
     */
    virtual int getVertexOfEdge(int i, int j) const = 0; 

    /** \brief
     * Returns local vertex number of the vertexIndex-th vertex of the
     * positionIndex-th part of type position (vertex, edge, face)
     */
    virtual int getVertexOfPosition(GeoIndex position,
				    int      positionIndex,
				    int      vertexIndex) const = 0;

219 220 221
    /** \brief
     *
     */
222 223
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

224 225 226
    /** \brief
     *
     */
227 228 229 230 231 232 233 234 235 236 237 238
    virtual int getEdgeOfFace(int face, int edge) const = 0;

    /** \brief
     * Returns the number of parts of type i in this element
     */
    virtual int getGeo(GeoIndex i) const = 0;

    /** \brief
     * Returns Element's \ref mark
     */
    inline const signed char getMark() const { 
      return mark;
239
    }
240 241 242 243 244 245 246 247 248 249 250

    /** \brief
     * Returns \ref newCoord[i]
     */
    double getNewCoord(int j) const;

    /** \brief
     * Returns Element's \ref index
     */
    inline int getIndex() const { 
      return index; 
251
    }
252 253 254 255 256 257

    /** \brief
     * Returns \ref newCoord
     */
    inline WorldVector<double>* getNewCoord() const { 
      return newCoord; 
258
    }
259 260 261 262 263 264 265 266 267 268 269 270

    /** \} */

    // ===== setting methods ======================================================

    /** \name setting methods
     * \{
     */

    /** \brief
     * Sets \ref child[0]
     */
271 272
    virtual void setFirstChild(Element *aChild) {
      child[0] = aChild;
273
    }
274 275 276 277

    /** \brief
     * Sets \ref child[1]
     */
278 279
    virtual void setSecondChild(Element *aChild) {
      child[1] = aChild;
280
    }
281 282 283 284

    /** \brief
     * Sets \ref elementData of Element
     */
285 286
    void setElementData(ElementData* ed) {
      elementData = ed;
287
    }
288 289 290 291 292

    /** \brief
     * Sets \ref newCoord of Element. Needed by refinement, if Element has a
     * boundary edge on a curved boundary.
     */
293 294
    inline void setNewCoord(WorldVector<double>* coord) {
      newCoord = coord;
295
    }
296 297 298 299

    /** \brief
     * Sets \ref mesh.
     */
300 301
    inline void setMesh(Mesh *m) {
      mesh = m;
302
    }
303 304 305 306

    /** \brief
     * Sets the pointer to the DOFs of the i-th node of Element
     */
307 308 309
    DegreeOfFreedom* setDOF(int pos, DegreeOfFreedom* p) {
      dof[pos] = p;
      return dof[pos];
310
    }
311 312 313 314 315 316 317

    /** \brief
     * Checks whether Element is a leaf element and whether it has leaf data.
     * If the checks don't fail, leaf data's error estimation is set to est.
     */
    inline void setEstimation(double est, int row)
    {
318
      if (isLeaf()) {
319
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
320
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
321
	TEST_EXIT_DBG(ld)("leaf data not estimatable\n");
322 323 324

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
325
      } else {
326 327
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
328
    }
329 330 331 332 333 334 335

    /** \brief
     * Sets Element's coarsening error estimation, if Element is a leaf element
     * and if it has leaf data and if this leaf data are coarsenable.
     */
    inline void setCoarseningEstimation(double est, int row)
    {
336
      if (isLeaf()) {
337
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
338
	ElementData *ld = elementData->getElementData(COARSENABLE);
339
	TEST_EXIT_DBG(ld)("leaf data not coarsenable\n");
340 341 342

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
343
      } else {
344 345
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
346
    }
347 348 349 350

    /** \brief
     * Sets Elements \ref mark = mark + 1;
     */
351 352 353
    inline void incrementMark() {
      mark++;
    }
354 355 356 357

    /** \brief
     * Sets Elements \ref mark = mark - 1;
     */
358 359 360
    inline void decrementMark() {
      if (0 < mark) 
	mark--;
361
    }
362 363 364 365

    /** \brief
     * Sets Element's \ref mark
     */
366 367
    inline void setMark(signed char m) {
      mark = m;
368
    }
369 370 371 372 373 374 375 376 377 378 379 380 381 382

    /** \} */

    // ===== pure virtual methods =================================================

    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
383
      sortFaceIndices(int face, FixVec<int,WORLD> *vec) const = 0;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

    /** \brief
     * Returns a copy of itself. Needed by Mesh to create Elements by a
     * prototype. 
     */ 
    virtual Element *clone() = 0;

    /** \brief
     * Returns which side of child[childnr] corresponds to side sidenr of 
     * this Element. If the child has no corresponding
     * side, the return value is negative. *isBisected is true after the
     * function call, if the side of the child is only a part of element's 
     * side, false otherwise. 
     */
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

    /** \brief
     * Returns which vertex of elements parent corresponds to the vertexnr of
     * the element, if the element is the childnr-th child of the parent.
     * If the vertex is the ner vertex at the refinement edge, -1 is returned.
     */
    virtual int getVertexOfParent(int childnr, int vertexnr, int elType = 0) const = 0;

    /** \brief
     * Returns whether Element is a Line
     */
    virtual bool isLine() const = 0;

    /** \brief
     * Returns whether Element is a Triangle
     */
    virtual bool isTriangle() const = 0;

    /** \brief
     * Returns whether Element is a Tetrahedron
     */
    virtual bool isTetrahedron() const = 0;

    /** \brief
     * Returns whether Element has sideElem as one of its sides.
     */
    virtual bool hasSide(Element *sideElem) const = 0;

    /** \} */

    // ===== other public methods =================================================

    /** \brief
     * assignment operator
     */
    Element& operator=(const Element& old);

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

    /** \brief
     * Refines Element's leaf data
     */
445 446 447 448
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) {
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
449 450 451 452 453
	  ElementData *tmp = elementData->getDecorated();
	  DELETE elementData;
	  elementData = tmp;
	}
      }
454
    }
455 456 457 458 459 460 461

    /** \brief
     * Coarsens Element's leaf data
     */
    inline void coarsenElementData(Element* child1, Element* child2, int elType=0) {
      ElementData *childData;
      childData = child1->getElementData();
462
      if (childData) {
463 464 465 466 467
	childData->coarsenElementData(this, child1, child2, elType);
	DELETE childData;
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
468
      if (childData) {
469 470 471 472
	childData->coarsenElementData(this, child2, child1, elType);
	DELETE childData;
	child2->setElementData(NULL);
      }
473
    }
474 475 476 477 478 479

    /** \brief
     * Returns pointer to \ref elementData
     */
    inline ElementData* getElementData() const {
      return elementData;
480
    }
481

482 483 484
    /** \brief
     *
     */
485
    inline ElementData* getElementData(int typeID) const {
486
      if (elementData) {
487 488 489
	return elementData->getElementData(typeID);
      }
      return NULL;
490
    }
491 492 493 494 495 496

    /** \brief
     * kills \ref elementData
     */
    bool deleteElementData(int typeID) {
      FUNCNAME("Element::deleteElementData()");
497 498
      if (elementData) {
	if (elementData->isOfType(typeID)) {
499 500 501 502 503 504 505 506 507
	  ElementData *tmp = elementData;
	  elementData = elementData->getDecorated();
	  DELETE tmp;
	  return true;
	} else {
	  return elementData->deleteDecorated(typeID);
	}
      }
      return false;
508
    }
509 510 511 512 513 514 515 516

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
517
			 unsigned char elementTyp = 255);
518 519 520 521

    /** \brief
     * Returns whether Element's \ref newCoord is set
     */
522 523
    inline bool isNewCoordSet() const { 
      return (newCoord != NULL);
524
    }
525 526 527 528 529 530 531 532

    /** \brief
     * Frees memory for \ref newCoord
     */
    void eraseNewCoord();

    // ===== Serializable implementation =====
  
533
    void serialize(std::ostream &out);
534

535
    void deserialize(std::istream &in);
536

537 538
    int calcMemoryUsage();

539 540 541 542 543 544 545 546 547 548
    // ===== protected methods ====================================================
  protected:
    /** \brief
     * Sets Element's \ref dof pointer. Used by friend class Mesh.
     */
    void setDOFPtrs();
  
    /** \brief
     * Sets Element's \ref index. Used by friend class Mesh.
     */
549 550
    inline void setIndex(int i) {
      index = i;
551
    }
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct1(const DOFAdmin*);

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct2(const DOFAdmin*);

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
568
    Element *child[2];
569 570 571 572 573 574 575 576 577 578 579

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
     * ordered
     * the following way: The first N_VERTICES entries correspond to the DOFs at
     * the vertices of the element. The next ones are those at the edges, if 
     * present, then those at the faces, if present, and then those at the 
     * barycenter, if present.
     */
580
    DegreeOfFreedom **dof;
581 582 583 584 585 586

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
587
    int index;
588 589 590 591 592 593

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
594
    signed char mark;
595 596 597 598 599 600 601 602 603 604 605 606 607 608
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
     * information
     * can be also produced by the traversal routines in the case of curved 
     * boundary.
     */
    WorldVector<double> *newCoord;

    /** \brief
     * Pointer to the Mesh this element belongs to
     */
609
    Mesh* mesh;
610 611 612 613

    /** \brief
     * Pointer to Element's leaf data
     */
614
    ElementData* elementData;
615 616 617 618 619 620 621 622 623 624



    friend class Mesh;
  };

}

#endif  // AMDIS_ELEMENT_H