GlobalMatrixSolver.cc 18 KB
Newer Older
1
2
3
4
5
#include "GlobalMatrixSolver.h"
#include "DOFVector.h"
#include "Debug.h"
#include "SystemVector.h"
#include "parallel/StdMpi.h"
6
#include "parallel/ParallelDomainDbg.h"
7
8
9
10
11
12
13

#include "petscksp.h"

namespace AMDiS {

  PetscErrorCode myKSPMonitor(KSP ksp, PetscInt iter, PetscReal rnorm, void *)
  {    
14
    if (iter % 100 == 0 && MPI::COMM_WORLD.Get_rank() == 0)
15
16
17
18
19
      std::cout << "[0]  Petsc-Iteration " << iter << ": " << rnorm << std::endl;

    return 0;
  }
 
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

  void GlobalMatrixSolver::addToMeshDistributor(MeshDistributor& m)
  {
    meshDistributor = &m;
    m.addProblemStat(this);
  }


  void GlobalMatrixSolver::buildAfterCoarsen(AdaptInfo *adaptInfo, Flag flag,
					     bool assembleMatrix,
					     bool assembleVector)
  {
    meshDistributor->checkMeshChange();
    ProblemVec::buildAfterCoarsen(adaptInfo, flag, assembleMatrix, assembleVector);
  }


  void GlobalMatrixSolver::solve(AdaptInfo *adaptInfo, bool fixedMatrix)
38
39
40
  {
    FUNCNAME("GlobalMatrixSolver::solve()");

41
42
    TEST_EXIT(meshDistributor)("Should not happen!\n");

43
44
45
46
47
#ifdef _OPENMP
    double wtime = omp_get_wtime();
#endif
    clock_t first = clock();

48
49
    fillPetscMatrix(systemMatrix, rhs);
    solvePetscMatrix(*solution);
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

#ifdef _OPENMP
    INFO(info, 8)("solution of discrete system needed %.5f seconds system time / %.5f seconds wallclock time\n",
		   TIME_USED(first, clock()),
		   omp_get_wtime() - wtime);
#else
    INFO(info, 8)("solution of discrete system needed %.5f seconds\n",
		   TIME_USED(first, clock()));
#endif    
  }


  void GlobalMatrixSolver::setDofMatrix(DOFMatrix* mat, int dispMult, 
					int dispAddRow, int dispAddCol)
  {
    FUNCNAME("GlobalMatrixSolver::setDofMatrix()");

    TEST_EXIT(mat)("No DOFMatrix!\n");

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits= mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;

    traits::col<Matrix>::type col(mat->getBaseMatrix());
    traits::const_value<Matrix>::type value(mat->getBaseMatrix());

    typedef traits::range_generator<row, Matrix>::type cursor_type;
    typedef traits::range_generator<nz, cursor_type>::type icursor_type;

    std::vector<int> cols;
    std::vector<double> values;
    cols.reserve(300);
    values.reserve(300);

    // === Traverse all rows of the dof matrix and insert row wise the values ===
    // === to the petsc matrix.                                               ===

    for (cursor_type cursor = begin<row>(mat->getBaseMatrix()), 
	   cend = end<row>(mat->getBaseMatrix()); cursor != cend; ++cursor) {

      cols.clear();
      values.clear();

      // Global index of the current row dof.
94
      DegreeOfFreedom globalRowDof = meshDistributor->mapLocalToGlobal(*cursor);
95
      // Test if the current row dof is a periodic dof.
96
      bool periodicRow = (meshDistributor->getPeriodicDofMap().count(globalRowDof) > 0);
97
98
99
100
101
102
103
104
105
106
107
108


      // === Traverse all non zero entries of the row and produce vector cols ===
      // === with the column indices of all row entries and vector values     ===
      // === with the corresponding values.                                   ===

      for (icursor_type icursor = begin<nz>(cursor), icend = end<nz>(cursor); 
	   icursor != icend; ++icursor) {

	// Set only non null values.
	if (value(*icursor) != 0.0) {
	  // Global index of the current column index.
109
	  int globalColDof = meshDistributor->mapLocalToGlobal(col(*icursor));
110
111
112
113
114
	  // Calculate the exact position of the column index in the petsc matrix.
	  int colIndex = globalColDof * dispMult + dispAddCol;

	  // If the current row is not periodic, but the current dof index is periodic,
	  // we have to duplicate the value to the other corresponding periodic columns.
115
116
 	  if (periodicRow == false && 
	      meshDistributor->getPeriodicDofMap().count(globalColDof) > 0) {
117
118
	    // The value is assign to n matrix entries, therefore, every entry 
	    // has only 1/n value of the original entry.
119
120
	    double scalFactor = 
	      1.0 / (meshDistributor->getPeriodicDof(globalColDof).size() + 1.0);
121
122
123
124
125
126
127

	    // Insert original entry.
 	    cols.push_back(colIndex);
 	    values.push_back(value(*icursor) * scalFactor);

	    // Insert the periodic entries.
 	    for (std::set<DegreeOfFreedom>::iterator it = 
128
129
		   meshDistributor->getPeriodicDof(globalColDof).begin();
 		 it != meshDistributor->getPeriodicDof(globalColDof).end(); ++it) {
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
 	      cols.push_back(*it * dispMult + dispAddCol);
 	      values.push_back(value(*icursor) * scalFactor);
	    }
 	  } else {
	    // Neigher row nor column dof index is periodic, simple add entry.
	    cols.push_back(colIndex);
	    values.push_back(value(*icursor));
	  }
	}
      }


      // === Up to now we have assembled on row. Now, the row must be send to the ===
      // === corresponding rows to the petsc matrix.                              ===

      // Calculate petsc row index.
      int rowIndex = globalRowDof * dispMult + dispAddRow;
      
      if (periodicRow) {
	// The row dof is periodic, so send dof to all the corresponding rows.

151
152
	double scalFactor = 
	  1.0 / (meshDistributor->getPeriodicDof(globalRowDof).size() + 1.0);
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
	
	int diagIndex = -1;
	for (int i = 0; i < static_cast<int>(values.size()); i++) {
	  // Change only the non diagonal values in the col. For the diagonal test
	  // we compare the global dof indices of the dof matrix (not of the petsc
	  // matrix!).
	  if ((cols[i] - dispAddCol) / dispMult != globalRowDof)
	    values[i] *= scalFactor;
	  else
	    diagIndex = i;
	}
	
	// Send the main row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);	
 
	// Set diagonal element to zero, i.e., the diagonal element of the current
	// row is not send to the periodic row indices.
	if (diagIndex != -1)
	  values[diagIndex] = 0.0;

	// Send the row to all periodic row indices.
175
176
	for (std::set<DegreeOfFreedom>::iterator it = meshDistributor->getPeriodicDof(globalRowDof).begin();
	     it != meshDistributor->getPeriodicDof(globalRowDof).end(); ++it) {
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
	  int perRowIndex = *it * dispMult + dispAddRow;
	  MatSetValues(petscMatrix, 1, &perRowIndex, cols.size(), 
		       &(cols[0]), &(values[0]), ADD_VALUES);
	}

      } else {
	// The row dof is not periodic, simply send the row to the petsc matrix.
	MatSetValues(petscMatrix, 1, &rowIndex, cols.size(), 
		     &(cols[0]), &(values[0]), ADD_VALUES);
      }    
    }
  }


  void GlobalMatrixSolver::setDofVector(Vec& petscVec, DOFVector<double>* vec, 
					int dispMult, int dispAdd)
  {
194
195
    FUNCNAME("GlobalMatrixSolver::setDofVector()");

196
197
198
199
    // Traverse all used dofs in the dof vector.
    DOFVector<double>::Iterator dofIt(vec, USED_DOFS);
    for (dofIt.reset(); !dofIt.end(); ++dofIt) {
      // Calculate global row index of the dof.
200
201
      DegreeOfFreedom globalRow = 
	meshDistributor->mapLocalToGlobal(dofIt.getDOFIndex());
202
203
204
      // Calculate petsc index of the row dof.
      int index = globalRow * dispMult + dispAdd;

205
      if (meshDistributor->getPeriodicDofMap().count(globalRow) > 0) {
206
207
	// The dof index is periodic, so devide the value to all dof entries.

208
	double value = *dofIt / (meshDistributor->getPeriodicDof(globalRow).size() + 1.0);
209
210
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);

211
212
	for (std::set<DegreeOfFreedom>::iterator it = meshDistributor->getPeriodicDof(globalRow).begin();
	     it != meshDistributor->getPeriodicDof(globalRow).end(); ++it) {
213
214
215
216
217
218
219
220
221
	  index = *it * dispMult + dispAdd;
	  VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
	}

      } else {
	// The dof index is not periodic.
	double value = *dofIt;
	VecSetValues(petscVec, 1, &index, &value, ADD_VALUES);
      }
222
    }
223
224
225
226
227
228
229
230
231
232
  }


  void GlobalMatrixSolver::createPetscNnzStructure(Matrix<DOFMatrix*> *mat)
  {
    FUNCNAME("GlobalMatrixSolver::createPetscNnzStructure()");

    TEST_EXIT_DBG(!d_nnz)("There is something wrong!\n");
    TEST_EXIT_DBG(!o_nnz)("There is something wrong!\n");

233
    int nRankRows = meshDistributor->getNumberRankDofs() * nComponents;
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    d_nnz = new int[nRankRows];
    o_nnz = new int[nRankRows];
    for (int i = 0; i < nRankRows; i++) {
      d_nnz[i] = 0;
      o_nnz[i] = 0;
    }

    using mtl::tag::row; using mtl::tag::nz; using mtl::begin; using mtl::end;
    namespace traits = mtl::traits;
    typedef DOFMatrix::base_matrix_type Matrix;
    typedef std::vector<std::pair<int, int> > MatrixNnzEntry;

    // Stores to each rank a list of nnz entries (i.e. pairs of row and column index)
    // that this rank will send to. This nnz entries will be assembled on this rank,
    // but because the row DOFs are not DOFs of this rank they will be send to the
    // owner of the row DOFs.
    std::map<int, MatrixNnzEntry> sendMatrixEntry;

    for (int i = 0; i < nComponents; i++) {
      for (int j = 0; j < nComponents; j++) {
 	if ((*mat)[i][j]) {
	  Matrix bmat = (*mat)[i][j]->getBaseMatrix();

	  traits::col<Matrix>::type col(bmat);
	  traits::const_value<Matrix>::type value(bmat);
	  
	  typedef traits::range_generator<row, Matrix>::type cursor_type;
	  typedef traits::range_generator<nz, cursor_type>::type icursor_type;
	  
	  for (cursor_type cursor = begin<row>(bmat), 
		 cend = end<row>(bmat); cursor != cend; ++cursor) {

	    // Map the local row number to the global DOF index and create from it
	    // the global PETSc row index of this DOF.
268
269
	    int petscRowIdx = 
	      meshDistributor->mapLocalToGlobal(*cursor) * nComponents + i;
270

271
	    if (meshDistributor->getIsRankDof(*cursor)) {
272
273
274
275
276

	      // === The current row DOF is a rank dof, so create the corresponding ===
	      // === nnz values directly on rank's nnz data.                        ===

	      // This is the local row index of the local PETSc matrix.
277
278
	      int localPetscRowIdx = 
		petscRowIdx - meshDistributor->getRstart() * nComponents;
279

280
281
282
283
	      TEST_EXIT_DBG(localPetscRowIdx >= 0 && localPetscRowIdx < nRankRows)
		("Should not happen! Wrong r = %d %d %d %d %d\n", 
		 localPetscRowIdx, meshDistributor->getRstart(), *cursor, 
		 meshDistributor->mapLocalToGlobal(*cursor), nRankRows);
284
285
286
287
288
	      
	      // Traverse all non zero entries in this row.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
289
290
		  int petscColIdx = 
		    meshDistributor->mapLocalToGlobal(col(*icursor)) * nComponents + j;
291
292
293

		  // The row DOF is a rank DOF, if also the column is a rank DOF, 
		  // increment the d_nnz values for this row, otherwise the o_nnz value.
294
295
		  if (petscColIdx >= meshDistributor->getRstart() * nComponents && 
		      petscColIdx < meshDistributor->getRstart() * nComponents + nRankRows)
296
297
298
299
300
301
		    d_nnz[localPetscRowIdx]++;
		  else
		    o_nnz[localPetscRowIdx]++;
		}    
	      }
	    } else {
302
303
	      typedef std::map<int, DofContainer> RankToDofContainer;

304
305
306
307
308
309
310
	      // === The current row DOF is not a rank dof, i.e., it will be created ===
	      // === on this rank, but after this it will be send to another rank    ===
	      // === matrix. So we need to send also the corresponding nnz structure ===
	      // === of this row to the corresponding rank.                          ===

	      // Find out who is the member of this DOF.
	      int sendToRank = -1;
311
312
	      for (RankToDofContainer::iterator it = meshDistributor->getRecvDofs().begin();
		   it != meshDistributor->getRecvDofs().end(); ++it) {
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
		for (DofContainer::iterator dofIt = it->second.begin();
		     dofIt != it->second.end(); ++dofIt) {
		  if (**dofIt == *cursor) {
		    sendToRank = it->first;
		    break;
		  }
		}

		if (sendToRank != -1)
		  break;
	      }

	      TEST_EXIT_DBG(sendToRank != -1)("Should not happen!\n");

	      // Send all non zero entries to the member of the row DOF.
	      for (icursor_type icursor = begin<nz>(cursor), 
		     icend = end<nz>(cursor); icursor != icend; ++icursor) {
		if (value(*icursor) != 0.0) {
331
332
		  int petscColIdx = 
		    meshDistributor->mapLocalToGlobal(col(*icursor)) * nComponents + j;
333
334
335
336
337
338
339
340
341
342
343
344
345
346
		  
		  sendMatrixEntry[sendToRank].
		    push_back(std::make_pair(petscRowIdx, petscColIdx));
		}
	      }

	    } // if (isRankDof[*cursor]) ... else ...
	  } // for each row in mat[i][j]
	} // if mat[i][j]
      } 
    }

    // === Send and recv the nnz row structure to/from other ranks. ===

347
    StdMpi<MatrixNnzEntry> stdMpi(meshDistributor->getMpiComm(), true);
348
    stdMpi.send(sendMatrixEntry);
349
    stdMpi.recv(meshDistributor->getSendDofs());
350
351
352
353
354
355
356
357
358
359
360
361
    stdMpi.startCommunication<int>(MPI_INT);

    // === Evaluate the nnz structure this rank got from other ranks and add it to ===
    // === the PETSc nnz data structure.                                           ===

    for (std::map<int, MatrixNnzEntry>::iterator it = stdMpi.getRecvData().begin();
	 it != stdMpi.getRecvData().end(); ++it) {
      if (it->second.size() > 0) {
	for (unsigned int i = 0; i < it->second.size(); i++) {
	  int r = it->second[i].first;
	  int c = it->second[i].second;

362
	  int localRowIdx = r - meshDistributor->getRstart() * nComponents;
363
364
365
366
367

	  TEST_EXIT_DBG(localRowIdx >= 0 && localRowIdx < nRankRows)
	    ("Got row index %d/%d (nRankRows = %d) from rank %d. Should not happen!\n",
	     r, localRowIdx, nRankRows, it->first);
	  
368
369
	  if (c < meshDistributor->getRstart() * nComponents || 
	      c >= meshDistributor->getRstart() * nComponents + nRankRows)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
	    o_nnz[localRowIdx]++;
	  else
	    d_nnz[localRowIdx]++;
	}
      }
    }  
  }


  void GlobalMatrixSolver::fillPetscMatrix(Matrix<DOFMatrix*> *mat, SystemVector *vec)
  {
    FUNCNAME("GlobalMatrixSolver::fillPetscMatrix()");

    clock_t first = clock();
384
385
    int nRankRows = meshDistributor->getNumberRankDofs() * nComponents;
    int nOverallRows = meshDistributor->getNumberOverallDofs() * nComponents;
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    // === Create PETSc vector (rhs, solution and a temporary vector). ===

    VecCreate(PETSC_COMM_WORLD, &petscRhsVec);
    VecSetSizes(petscRhsVec, nRankRows, nOverallRows);
    VecSetType(petscRhsVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscSolVec);
    VecSetSizes(petscSolVec, nRankRows, nOverallRows);
    VecSetType(petscSolVec, VECMPI);

    VecCreate(PETSC_COMM_WORLD, &petscTmpVec);
    VecSetSizes(petscTmpVec, nRankRows, nOverallRows);
    VecSetType(petscTmpVec, VECMPI);

401
402
403
404
405
    int recvAllValues = 0;
    int sendValue = static_cast<int>(meshDistributor->getLastMeshChangeIndex() != lastMeshNnz);
    meshDistributor->getMpiComm().Allreduce(&sendValue, &recvAllValues, 1, MPI_INT, MPI_SUM);

    if (!d_nnz || recvAllValues != 0) {
406
407
      if (d_nnz) {
	delete [] d_nnz;
408
	d_nnz = NULL;
409
	delete [] o_nnz;
410
	o_nnz = NULL;
411
412
      }

413
      createPetscNnzStructure(mat);
414
      lastMeshNnz = meshDistributor->getLastMeshChangeIndex();
415
    }
416
417
418
419
420
421
422
423
424
425
426

    // === Create PETSc matrix with the computed nnz data structure. ===

    MatCreateMPIAIJ(PETSC_COMM_WORLD, nRankRows, nRankRows, nOverallRows, nOverallRows,
		    0, d_nnz, 0, o_nnz, &petscMatrix);

    INFO(info, 8)("Fill petsc matrix 1 needed %.5f seconds\n", TIME_USED(first, clock()));

#if (DEBUG != 0)
    int a, b;
    MatGetOwnershipRange(petscMatrix, &a, &b);
427
428
429
430
    TEST_EXIT(a == meshDistributor->getRstart() * nComponents)
      ("Wrong matrix ownership range!\n");
    TEST_EXIT(b == meshDistributor->getRstart() * nComponents + nRankRows)
      ("Wrong matrix ownership range!\n");
431
432
#endif

433

434
435
436
437
438
    // === Transfer values from DOF matrices to the PETSc matrix. === 

    for (int i = 0; i < nComponents; i++)
      for (int j = 0; j < nComponents; j++)
	if ((*mat)[i][j])
439
	  setDofMatrix((*mat)[i][j], nComponents, i, j);	
440
441
442
443
444
445

    INFO(info, 8)("Fill petsc matrix 2 needed %.5f seconds\n", TIME_USED(first, clock()));

    MatAssemblyBegin(petscMatrix, MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(petscMatrix, MAT_FINAL_ASSEMBLY);

446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    // === Transfer values from DOF vector to the PETSc vector. === 

    for (int i = 0; i < nComponents; i++)
      setDofVector(petscRhsVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscRhsVec);
    VecAssemblyEnd(petscRhsVec);

    INFO(info, 8)("Fill petsc matrix needed %.5f seconds\n", TIME_USED(first, clock()));
  }


  void GlobalMatrixSolver::solvePetscMatrix(SystemVector &vec)
  {
    FUNCNAME("GlobalMatrixSolver::solvePetscMatrix()");

#if 0
    // Set old solution to be initiual guess for petsc solver.
    for (int i = 0; i < nComponents; i++)
      setDofVector(petscSolVec, vec->getDOFVector(i), nComponents, i);

    VecAssemblyBegin(petscSolVec);
    VecAssemblyEnd(petscSolVec);
#endif

    // === Init Petsc solver. ===

    KSP solver;
    KSPCreate(PETSC_COMM_WORLD, &solver);
    KSPSetOperators(solver, petscMatrix, petscMatrix, SAME_NONZERO_PATTERN); 
    KSPSetTolerances(solver, 0.0, 1e-8, PETSC_DEFAULT, PETSC_DEFAULT);
    KSPSetType(solver, KSPBCGS);
    KSPMonitorSet(solver, myKSPMonitor, PETSC_NULL, 0);
    KSPSetFromOptions(solver);
    // Do not delete the solution vector, use it for the initial guess.
    //    KSPSetInitialGuessNonzero(solver, PETSC_TRUE);

484
485
486
487
#if (DEBUG != 0)
    //    ParallelDomainDbg::writeCoordsFile(*meshDistributor, "mpi-coords", "dat");
#endif

488
489
490
491
492

    // === Run Petsc. ===

    KSPSolve(solver, petscRhsVec, petscSolVec);

493

494
    // === Transfere values from Petsc's solution vectors to the dof vectors.
495

496
497
498
    PetscScalar *vecPointer;
    VecGetArray(petscSolVec, &vecPointer);

499
    int nRankDofs = meshDistributor->getNumberRankDofs();
500
    for (int i = 0; i < nComponents; i++) {
501
      DOFVector<double> &dofvec = *(vec.getDOFVector(i));
502
      for (int j = 0; j < nRankDofs; j++)
503
	dofvec[meshDistributor->mapLocalToDofIndex(j)] = 
504
	  vecPointer[j * nComponents + i]; 
505
506
507
508
509
510
511
    }

    VecRestoreArray(petscSolVec, &vecPointer);


    // === Synchronize dofs at common dofs, i.e., dofs that correspond to more ===
    // === than one partition.                                                 ===
512
    meshDistributor->synchVector(vec);
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537


    // === Print information about solution process. ===

    int iterations = 0;
    KSPGetIterationNumber(solver, &iterations);
    MSG("  Number of iterations: %d\n", iterations);
    
    double norm = 0.0;
    MatMult(petscMatrix, petscSolVec, petscTmpVec);
    VecAXPY(petscTmpVec, -1.0, petscRhsVec);
    VecNorm(petscTmpVec, NORM_2, &norm);
    MSG("  Residual norm: %e\n", norm);


    // === Destroy Petsc's variables. ===

    MatDestroy(petscMatrix);
    VecDestroy(petscRhsVec);
    VecDestroy(petscSolVec);
    VecDestroy(petscTmpVec);
    KSPDestroy(solver);
  }

}