InteriorBoundary.cc 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


13
#include "parallel/InteriorBoundary.h"
14
#include "parallel/ElementObjectDatabase.h"
15
16
#include "FiniteElemSpace.h"
#include "BasisFunction.h"
17
#include "Serializer.h"
18
#include "VertexVector.h"
19
20

namespace AMDiS {
Thomas Witkowski's avatar
Thomas Witkowski committed
21

22
23
24
  using namespace std;


25
26
  void InteriorBoundary::create(MeshLevelData &levelData,
				int level,
27
28
29
30
31
32
33
34
35
36
37
				ElementObjectDatabase &elObjDb)
  { 
    FUNCNAME("InteriorBoundary::clear()");

    own.clear();
    other.clear();
    periodic.clear();

    Mesh *mesh = elObjDb.getMesh();
    TEST_EXIT_DBG(mesh)("Should not happen!\n");

38
39
    MPI::Intracomm mpiComm = MPI::COMM_WORLD; //levelData.getMpiComm(level);
    int mpiRank = mpiComm.Get_rank();
40
    std::set<int> levelRanks = levelData.getLevelRanks(level);
41

42
43
44
45
    // === Create interior boundary data structure. ===
    
    for (int geoPos = 0; geoPos < mesh->getDim(); geoPos++) {
      GeoIndex geoIndex = INDEX_OF_DIM(geoPos, mesh->getDim());
46

47
48
      while (elObjDb.iterate(geoIndex)) {
	map<int, ElementObjectData>& objData = elObjDb.getIterateData();
49

50
51
52
	MSG("TEST BOUNDARY: %d, %d %d\n", mpiRank, objData.count(mpiRank), objData.size());


53
	// Test, if this is a boundary object of this rank.
54
55
56
	if (!(objData.count(mpiRank) && objData.size() > 1))
	  continue;

57
	MSG("CREATE BOUNDARY!\n");
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#if 0
	// Test, if the boundary object defines an interior boundary within the
	// ranks of the MPI group. If not, go to next element.
	bool boundaryWithinMpiGroup = false;
	if (levelRanks.size() == 1 && *(levelRanks.begin()) == -1) {
	  boundaryWithinMpiGroup = true;
	} else {
	  for (map<int, ElementObjectData>::iterator it = objData.begin();
	       it != objData.end(); ++it) {
	    if (it->first != mpiRank && levelRanks.count(it->first)) {
	      boundaryWithinMpiGroup == true;
	      break;
	    }
	  }
	}
	if (!boundaryWithinMpiGroup)
	  continue;
#endif	

	int owner = elObjDb.getIterateOwner(level);
78
79
80
81
82
83
84
85
86
	ElementObjectData& rankBoundEl = objData[mpiRank];
	
	AtomicBoundary bound;
	bound.maxLevel = elObjDb.getIterateMaxLevel();
	bound.rankObj.el = elObjDb.getElementPtr(rankBoundEl.elIndex);
	bound.rankObj.elIndex = rankBoundEl.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(rankBoundEl.elIndex);
	bound.rankObj.subObj = geoIndex;
	bound.rankObj.ithObj = rankBoundEl.ithObject;
87
	
88
89
90
91
92
93
94
95
	if (geoIndex == FACE) {
	  for (int edgeNo = 0; edgeNo < 3; edgeNo++) {
	    int edgeOfFace = 
	      bound.rankObj.el->getEdgeOfFace(bound.rankObj.ithObj, edgeNo);
	    
	    bound.rankObj.excludedSubstructures.push_back(make_pair(EDGE, edgeOfFace));
	  }
	}
96
	
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
	
	if (owner == mpiRank) {
	  for (map<int, ElementObjectData>::iterator it2 = objData.begin();
	       it2 != objData.end(); ++it2) {
	    if (it2->first == mpiRank)
	      continue;
	    
	    bound.neighObj.el = elObjDb.getElementPtr(it2->second.elIndex);
	    bound.neighObj.elIndex = it2->second.elIndex;
	    bound.neighObj.elType = elObjDb.getElementType(it2->second.elIndex);
	    bound.neighObj.subObj = geoIndex;
	    bound.neighObj.ithObj = it2->second.ithObject;
	    
	    bound.type = INTERIOR;
	    
112
	    AtomicBoundary& b = getNewOwn(it2->first);
113
114
115
116
117
118
119
120
121
122
123
124
	    b = bound;
	    if (geoIndex == EDGE)
	      b.neighObj.reverseMode = 
		elObjDb.getEdgeReverseMode(rankBoundEl, it2->second);
	    if (geoIndex == FACE)
	      b.neighObj.reverseMode = 
		elObjDb.getFaceReverseMode(rankBoundEl, it2->second);
	  }
	  
	} else {
	  TEST_EXIT_DBG(objData.count(owner) == 1)
	    ("Should not happen!\n");
125
	  
126
127
128
129
130
131
132
133
134
135
	  ElementObjectData& ownerBoundEl = objData[owner];
	  
	  bound.neighObj.el = elObjDb.getElementPtr(ownerBoundEl.elIndex);
	  bound.neighObj.elIndex = ownerBoundEl.elIndex;
	  bound.neighObj.elType = -1;
	  bound.neighObj.subObj = geoIndex;
	  bound.neighObj.ithObj = ownerBoundEl.ithObject;
	  
	  bound.type = INTERIOR;
	  
136
	  AtomicBoundary& b = getNewOther(owner);
137
138
139
140
141
142
143
144
	  b = bound;	    
	  if (geoIndex == EDGE)
	    b.rankObj.reverseMode =
	      elObjDb.getEdgeReverseMode(rankBoundEl, ownerBoundEl);
	  if (geoIndex == FACE)
	    b.rankObj.reverseMode = 
	      elObjDb.getFaceReverseMode(rankBoundEl, ownerBoundEl);
	}
145
      }
146
147
148
    }


149
    // === Create periodic boundary data structure. ===
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    for (PerBoundMap<DegreeOfFreedom>::iterator it = elObjDb.getPeriodicVertices().begin();
	 it != elObjDb.getPeriodicVertices().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perDofEl0 = 
	elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {

	int otherElementRank = elIt->first;
	ElementObjectData& perDofEl1 = elIt->second;

	AtomicBoundary bound;
	bound.rankObj.el = elObjDb.getElementPtr(perDofEl0.elIndex);
	bound.rankObj.elIndex = perDofEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perDofEl0.elIndex);
	bound.rankObj.subObj = VERTEX;
	bound.rankObj.ithObj = perDofEl0.ithObject;

	bound.neighObj.el = elObjDb.getElementPtr(perDofEl1.elIndex);
	bound.neighObj.elIndex = perDofEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perDofEl1.elIndex);
	bound.neighObj.subObj = VERTEX;
	bound.neighObj.ithObj = perDofEl1.ithObject;

	bound.type = it->second;

180
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
	b = bound;	    
      }
    }


    for (PerBoundMap<DofEdge>::iterator it = elObjDb.getPeriodicEdges().begin();
	 it != elObjDb.getPeriodicEdges().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perEdgeEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perEdgeEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perEdgeEl0.elIndex);
	bound.rankObj.elIndex = perEdgeEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perEdgeEl0.elIndex);
	bound.rankObj.subObj = EDGE;
	bound.rankObj.ithObj = perEdgeEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perEdgeEl1.elIndex);
	bound.neighObj.elIndex = perEdgeEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perEdgeEl1.elIndex);
	bound.neighObj.subObj = EDGE;
	bound.neighObj.ithObj = perEdgeEl1.ithObject;
	
	bound.type = it->second;
	
214
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
      }
    }


    for (PerBoundMap<DofFace>::iterator it = elObjDb.getPeriodicFaces().begin();
	 it != elObjDb.getPeriodicFaces().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      TEST_EXIT_DBG(elObjDb.getElements(it->first.first).size() == 1)
 	("Should not happen!\n");
      TEST_EXIT_DBG(elObjDb.getElements(it->first.second).size() == 1)
 	("Should not happen!\n");

      ElementObjectData& perFaceEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perFaceEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perFaceEl0.elIndex);
	bound.rankObj.elIndex = perFaceEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perFaceEl0.elIndex);
	bound.rankObj.subObj = FACE;
	bound.rankObj.ithObj = perFaceEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perFaceEl1.elIndex);
	bound.neighObj.elIndex = perFaceEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perFaceEl1.elIndex);
	bound.neighObj.subObj = FACE;
	bound.neighObj.ithObj = perFaceEl1.ithObject;
	
	bound.type = it->second;
	
260
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
      }
    }
    

    // === Once we have this information, we must care about the order of the ===
    // === atomic bounds in the three boundary handling object. Eventually    ===
    // === all the boundaries have to be in the same order on both ranks that ===
    // === share the bounday.                                                 ===

    StdMpi<vector<AtomicBoundary> > stdMpi(mpiComm);
    stdMpi.send(own);
    stdMpi.recv(other);
    stdMpi.startCommunication();


    // === The information about all neighbouring boundaries has been         ===
    // === received. So the rank tests if its own atomic boundaries are in    ===
    // === the same order. If not, the atomic boundaries are swaped to the    ===
    // === correct order.                                                     ===

    for (RankToBoundMap::iterator rankIt = other.begin();
	 rankIt != other.end(); ++rankIt) {

      // === We have received from rank "rankIt->first" the ordered list of   ===
      // === element indices. Now, we have to sort the corresponding list in  ===
      // === this rank to get the same order.                                 ===
     
      for (unsigned int j = 0; j < rankIt->second.size(); j++) {

	// If the expected object is not at place, search for it.

	BoundaryObject &recvedBound = stdMpi.getRecvData()[rankIt->first][j].rankObj;

	if ((rankIt->second)[j].neighObj != recvedBound) {
	  unsigned int k = j + 1;

	  for (; k < rankIt->second.size(); k++)
 	    if ((rankIt->second)[k].neighObj == recvedBound)
	      break;

	  // The element must always be found, because the list is just in
	  // another order.
	  TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");

	  // Swap the current with the found element.
	  AtomicBoundary tmpBound = (rankIt->second)[k];
	  (rankIt->second)[k] = (rankIt->second)[j];
	  (rankIt->second)[j] = tmpBound;	
	}
      }
    }


    // === Do the same for the periodic boundaries. ===

    if (periodic.size() > 0) {
      stdMpi.clear();

      RankToBoundMap sendBounds, recvBounds;
      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

	if (rankIt->first == mpiRank)
	  continue;

	if (rankIt->first < mpiRank)
	  sendBounds[rankIt->first] = rankIt->second;
	else
	  recvBounds[rankIt->first] = rankIt->second;	
      }

      stdMpi.send(sendBounds);
      stdMpi.recv(recvBounds);
      stdMpi.startCommunication();

      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

 	if (rankIt->first <= mpiRank)
 	  continue;
  
	for (unsigned int j = 0; j < rankIt->second.size(); j++) {
	  BoundaryObject &recvRankObj = 
	    stdMpi.getRecvData()[rankIt->first][j].rankObj;
	  BoundaryObject &recvNeighObj = 
	    stdMpi.getRecvData()[rankIt->first][j].neighObj;

	  if (periodic[rankIt->first][j].neighObj != recvRankObj ||
	      periodic[rankIt->first][j].rankObj != recvNeighObj) {
	    unsigned int k = j + 1;	    
	    for (; k < rankIt->second.size(); k++)
	      if (periodic[rankIt->first][k].neighObj == recvRankObj &&
		  periodic[rankIt->first][k].rankObj == recvNeighObj)
		break;
	    
	    // The element must always be found, because the list is just in 
	    // another order.
	    TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");
367

368
369
370
371
372
373
374
375
	    // Swap the current with the found element.
	    AtomicBoundary tmpBound = (rankIt->second)[k];
	    (rankIt->second)[k] = (rankIt->second)[j];
	    (rankIt->second)[j] = tmpBound;	
	  } 
	}
      }     
    } // periodicBoundary.boundary.size() > 0
376
377
378
  }


379
  void InteriorBoundary::serialize(ostream &out)
380
  {
381
382
383
384
    serialize(out, own);
    serialize(out, other);
    serialize(out, periodic);
  }
385

386

387
388
389
390
391
  void InteriorBoundary::serialize(ostream &out,
				   RankToBoundMap& boundary)
  {
    FUNCNAME("InteriorBoundary::serialize()");

392
    int mSize = boundary.size();
393
    SerUtil::serialize(out, mSize);
394
395
    for (RankToBoundMap::iterator it = boundary.begin(); 
	 it != boundary.end(); ++it) {
396
397
      int rank = it->first;
      int boundSize = it->second.size();
398
399
      SerUtil::serialize(out, rank);
      SerUtil::serialize(out, boundSize);
400
401
402
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = (it->second)[i];

403
	SerUtil::serialize(out, bound.rankObj.elIndex);
404
	SerUtil::serialize(out, bound.rankObj.elType);
405
406
	SerUtil::serialize(out, bound.rankObj.subObj);
	SerUtil::serialize(out, bound.rankObj.ithObj);
407
	SerUtil::serialize(out, bound.rankObj.reverseMode);
408
	serializeExcludeList(out, bound.rankObj.excludedSubstructures);
409

410
	SerUtil::serialize(out, bound.neighObj.elIndex);
411
	SerUtil::serialize(out, bound.neighObj.elType);
412
413
	SerUtil::serialize(out, bound.neighObj.subObj);
	SerUtil::serialize(out, bound.neighObj.ithObj);
414
	SerUtil::serialize(out, bound.neighObj.reverseMode);
415
	serializeExcludeList(out, bound.neighObj.excludedSubstructures);
416
417

	SerUtil::serialize(out, bound.type);
418
419
      }
    }
420
421
  }

422

423
  void InteriorBoundary::deserialize(istream &in, Mesh *mesh)				     
424
  {
425
426
427
428
429
430
431
    map<int, Element*> elIndexMap;
    mesh->getElementIndexMap(elIndexMap);

    deserialize(in, own, elIndexMap);
    deserialize(in, other, elIndexMap);
    deserialize(in, periodic, elIndexMap);
  }
432

433

434
435
436
437
438
439
  void InteriorBoundary::deserialize(istream &in, 
				     RankToBoundMap& boundary,
				     map<int, Element*> &elIndexMap)
  {
    FUNCNAME("InteriorBoundary::deserialize()");

440
    int mSize = 0;
441
    SerUtil::deserialize(in, mSize);
442
443
444
    for (int i = 0; i < mSize; i++) {
      int rank = 0;
      int boundSize = 0;
445
446
      SerUtil::deserialize(in, rank);
      SerUtil::deserialize(in, boundSize);
447
448
449
450
451

      boundary[rank].resize(boundSize);
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = boundary[rank][i];

452
	SerUtil::deserialize(in, bound.rankObj.elIndex);
453
	SerUtil::deserialize(in, bound.rankObj.elType);
454
455
	SerUtil::deserialize(in, bound.rankObj.subObj);
	SerUtil::deserialize(in, bound.rankObj.ithObj);
456
	SerUtil::deserialize(in, bound.rankObj.reverseMode);
457
	deserializeExcludeList(in, bound.rankObj.excludedSubstructures);
458

459
	SerUtil::deserialize(in, bound.neighObj.elIndex);
460
	SerUtil::deserialize(in, bound.neighObj.elType);
461
462
	SerUtil::deserialize(in, bound.neighObj.subObj);
	SerUtil::deserialize(in, bound.neighObj.ithObj);
463
	SerUtil::deserialize(in, bound.neighObj.reverseMode);
464
	deserializeExcludeList(in, bound.neighObj.excludedSubstructures);
465

466
467
	SerUtil::deserialize(in, bound.type);

468
469
470
471
	TEST_EXIT_DBG(elIndexMap.count(bound.rankObj.elIndex) == 1)
	  ("Cannot find element with index %d for deserialization!\n", 
	   bound.rankObj.elIndex);

472
473
474
	TEST_EXIT_DBG(elIndexMap[bound.rankObj.elIndex]->getIndex() == 
		      bound.rankObj.elIndex)("Should not happen!\n");

475
	bound.rankObj.el = elIndexMap[bound.rankObj.elIndex];
476

477
478
	// For the case of periodic interior boundaries, a rank may have an
	// boundary with itself. In this case, also the pointer to the neighbour
479
	// object must be set correctly.
480
481
482
483
	if (elIndexMap.count(bound.neighObj.elIndex))
	  bound.neighObj.el = elIndexMap[bound.neighObj.elIndex];
	else
	  bound.neighObj.el = NULL;
484
485
      }
    }
486
  }
487
488


489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
  AtomicBoundary& InteriorBoundary::getNewOwn(int rank)
  {
    int size = own[rank].size();
    own[rank].resize(size + 1);
    return own[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewOther(int rank)
  {
    int size = other[rank].size();
    other[rank].resize(size + 1);
    return other[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewPeriodic(int rank)
  {
    int size = periodic[rank].size();
    periodic[rank].resize(size + 1);
    return periodic[rank][size];
  }


513
  void InteriorBoundary::serializeExcludeList(ostream &out, 
514
					      ExcludeList &list)
515
516
517
518
519
520
521
522
523
524
  {
    int size = list.size();
    SerUtil::serialize(out, size);
    for (int i = 0; i < size; i++) {
      SerUtil::serialize(out, list[i].first);
      SerUtil::serialize(out, list[i].second);
    }
  }


525
  void InteriorBoundary::deserializeExcludeList(istream &in, 
526
						ExcludeList &list)
527
528
529
530
531
532
533
534
535
536
537
538
  {
    int size = 0;
    SerUtil::deserialize(in, size);
    list.resize(0);
    list.reserve(size);

    for (int i = 0; i < size; i++) {
      GeoIndex a;
      int b;

      SerUtil::deserialize(in, a);
      SerUtil::deserialize(in, b);
539
      list.push_back(make_pair(a, b));
540
541
542
    }
  }

543
}