MacroReader.cc 62.2 KB
Newer Older
1
2
3
4
5
6
#include "MacroReader.h"
#include "MacroWriter.h"
#include "MacroElement.h"
#include "Boundary.h"
#include "FiniteElemSpace.h"
#include "Mesh.h"
7
#include <string.h>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "FixVec.h"
#include "FixVecConvert.h"
#include "PeriodicMap.h"
#include "ElInfo.h"
#include "Parameters.h"
#include "DOFIterator.h"
#include "SurfaceRegion_ED.h"
#include "ElementRegion_ED.h"
#include "LeafData.h"
#include "VertexVector.h"
#include <map>
#include <iostream>
#include <fstream>

namespace AMDiS {

  MacroInfo* MacroReader::readMacro(const char *filename, 
				    Mesh* mesh,
				    const char *periodicFile,
				    int check)
  {
    FUNCNAME("Mesh::readMacro()");

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
32
   
Thomas Witkowski's avatar
Thomas Witkowski committed
33
    MacroInfo *macroInfo = new MacroInfo();
34
35
    macroInfo->readAMDiSMacro(filename, mesh);

36
    std::deque<MacroElement*>::iterator mel = macroInfo->mel.begin();
37
38
39
    int **melVertex = macroInfo->mel_vertex;
    WorldVector<double> *coords = macroInfo->coords;
    DegreeOfFreedom **dof = macroInfo->dof;
40
41

    // === read periodic data =================================
42
    if (periodicFile && (strcmp(periodicFile, "") != 0)) {
43
44
45
46
47
48
49
50
51
      WARNING("periodic boundaries may lead to errors in small meshes if element neighbours not set\n");
    
      FILE *file = fopen(periodicFile, "r");
      TEST_EXIT(file)("can't open file %s\n", periodicFile);

      int n;
      int dim = mesh->getDim();

      int el1, el2;
Thomas Witkowski's avatar
Thomas Witkowski committed
52
53
      int *verticesEl1 = new int[dim];
      int *verticesEl2 = new int[dim];
54
      int mode = -1; // 0: drop dofs, 1: associate dofs
55
      int result;
56
57
58
59
60
61
62
63
      BoundaryType boundaryType;

      fscanf(file, "%*s %d", &n);

      fscanf(file, "%*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s");

      PeriodicMap periodicMap;
    
64
      for (int i = 0; i < n; i++) {
65
66
	std::map<int, int> vertexMapEl1;
	std::map<int, int> vertexMapEl2;
67

68
69
	result = fscanf(file, "%d", &mode);
	TEST_EXIT(result == 1)("mode?\n");
70
      
71
72
	result = fscanf(file, "%d", &boundaryType);
	TEST_EXIT(result == 1)("boundaryType?\n");
73
      
74
75
76
	result = fscanf(file, "%d", &el1);
	TEST_EXIT(result == 1)("el1?\n");

77
	for (int j = 0; j < dim; j++) {
78
79
	  result = fscanf(file, "%d", &verticesEl1[j]);
	  TEST_EXIT(result == 1)("vertEl1[%d]\n", j);
80
	}
81
82
	result = fscanf(file, "%d", &el2);
	TEST_EXIT(result == 1)("el2?\n");
83
	for (int j = 0; j < dim; j++) {
84
85
	  result = fscanf(file, "%d", &verticesEl2[j]);
	  TEST_EXIT(result == 1)("vertEl2[%d]\n", j);
86
	}
87
88
	for (int j = 0; j < dim; j++) {
	  if (mode == 0) {
89
90
91
92
93
94
95
96
97
	    periodicMap.setEntry(melVertex[el1][verticesEl1[j]], 
				 melVertex[el2][verticesEl2[j]]);
	  }
	  vertexMapEl1[verticesEl1[j]] = verticesEl2[j];
	  vertexMapEl2[verticesEl2[j]] = verticesEl1[j];
	}

	// calculate sides of periodic vertices
	int sideEl1 = 0, sideEl2 = 0;
98
	if (dim == 1) {
99
100
101
	  sideEl1 = verticesEl1[0];
	  sideEl2 = verticesEl2[0];
	} else {
102
	  for (int j = 0; j < dim + 1; j++) {
103
104
105
	    sideEl1 += j;
	    sideEl2 += j;
	  }
106
	  for (int j = 0; j < dim; j++) {
107
108
109
110
111
112
	    sideEl1 -= verticesEl1[j];
	    sideEl2 -= verticesEl2[j];
	  }
	}
	
	// create periodic info
113
114
	DimVec<WorldVector<double> > periodicCoordsEl1(dim - 1, NO_INIT);
	DimVec<WorldVector<double> > periodicCoordsEl2(dim - 1, NO_INIT);
115

116
117
	Element *element1 = const_cast<Element*>((*(mel + el1))->getElement());
	Element *element2 = const_cast<Element*>((*(mel + el2))->getElement());
118
119
      
	// for all vertices of this side
120
	for (int j = 0; j < dim; j++) {
121
122
123
124
125
126
127
128
129
130
131
132
133
134
	  periodicCoordsEl1[element1->getPositionOfVertex(sideEl1, verticesEl1[j])] = 
	    coords[melVertex[el2][vertexMapEl1[verticesEl1[j]]]];
	  periodicCoordsEl2[element2->getPositionOfVertex(sideEl2, verticesEl2[j])] =
	    coords[melVertex[el1][vertexMapEl2[verticesEl2[j]]]];
	}
      
	// decorate leaf data
	ElementData *ld1 = element1->getElementData();
	ElementData *ld2 = element2->getElementData();

	LeafDataPeriodic *ldp1 = dynamic_cast<LeafDataPeriodic*>(ld1->getElementData(PERIODIC));
	LeafDataPeriodic *ldp2 = dynamic_cast<LeafDataPeriodic*>(ld2->getElementData(PERIODIC));

	if (!ldp1) {
Thomas Witkowski's avatar
Thomas Witkowski committed
135
	  ldp1 = new LeafDataPeriodic(ld1);
136
137
138
139
	  element1->setElementData(ldp1);
	}

	if (!ldp2) {
Thomas Witkowski's avatar
Thomas Witkowski committed
140
	  ldp2 = new LeafDataPeriodic(ld2);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
	  element2->setElementData(ldp2);
	}

	ldp1->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl1, 
			      &periodicCoordsEl1);

	ldp2->addPeriodicInfo(mode,
			      boundaryType, 
			      sideEl2, 
			      &periodicCoordsEl2);

	if (mode != 0) {
	  VertexVector *associated = mesh->periodicAssociations[boundaryType];
156

157
	  if (!associated) {
Thomas Witkowski's avatar
Thomas Witkowski committed
158
	    associated = new VertexVector(mesh->getVertexAdmin(), "vertex vector");
159
160
161
162
163
164
165
	    mesh->periodicAssociations[boundaryType] = associated;
	    VertexVector::Iterator it(associated, ALL_DOFS);
	    for (it.reset2(); !it.end(); ++it) {
	      *it = it.getDOFIndex();
	    }
	  }

166
	  for (int j = 0; j < dim; j++) {
167
168
169
170
171
172
173
174
	    (*associated)[melVertex[el1][verticesEl1[j]]] =
	      melVertex[el2][vertexMapEl1[verticesEl1[j]]];
	    (*associated)[melVertex[el2][verticesEl2[j]]] =
	      melVertex[el1][vertexMapEl2[verticesEl2[j]]];
	  }
	}
      }    

Thomas Witkowski's avatar
Thomas Witkowski committed
175
176
      delete [] verticesEl1;
      delete [] verticesEl2;
177
178

      // change periodic vertex dofs
179
      for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
180
181
182
183
	if (periodicMap.getEntry(i) != -1) {
	  mesh->freeDOF(dof[i], VERTEX);
	  dof[i] = dof[periodicMap.getEntry(i)];

184
185
	  std::map<BoundaryType, VertexVector*>::iterator assoc;
	  std::map<BoundaryType, VertexVector*>::iterator assocEnd =
186
	      mesh->periodicAssociations.end();
187
188
189
190
191
192
193
194
195

	  for (assoc = mesh->periodicAssociations.begin(); 
	       assoc != assocEnd; 
	       ++assoc) {

	    DegreeOfFreedom a = (*(assoc->second))[i];
	    if (a != i) {
	      (*(assoc->second))[i] = i;
	      (*(assoc->second))[a] = periodicMap.getEntry(i);
196
	    }
197
198
	  }

199
200
201
	}
      }

202
203
      std::map<BoundaryType, VertexVector*>::iterator assoc;
      std::map<BoundaryType, VertexVector*>::iterator assocEnd =
204
205
206
	  mesh->periodicAssociations.end();
      for (assoc = mesh->periodicAssociations.begin(); 
	   assoc != assocEnd; 
207
208
209
210
211
	   ++assoc) {

	for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
	  if (i != (*(assoc->second))[i])
	    MSG("association %d: vertex %d -> vertex %d\n", 
212
		assoc->first, i, (*(assoc->second))[i]);
213
	}
214
215
216
      }

      for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
217
218
219
220
221
	if (periodicMap.getEntry(i) != -1) {
	  MSG("identification : vertex %d is now vertex %d\n", i, periodicMap.getEntry(i));
	}
      }
    }
222

223
224
    // =========================================================

225
226
227
    for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
      for (int k = 0; k < mesh->getGeo(VERTEX); k++) {
	(*(mel + i))->setCoord(k, coords[melVertex[i][k]]);
228

229
	const_cast<Element*>((*(mel + i))->getElement())->
230
	  setDOF(k, dof[melVertex[i][k]]);
231
      }
232
    }
233

234
235
236
    if (!macroInfo->neigh_set) {
      TEST_EXIT(!periodicFile)
	("periodic boundary condition => element neighbours must be set\n");
237
	computeNeighbours(mesh);
238
    } else {
239
240
241
242
	/****************************************************************************/
	/* fill MEL oppVertex values when reading neighbour information form file  */
	/****************************************************************************/

243
244
245
246
247
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	  MacroElement *neigh = const_cast<MacroElement*>(mel[i]->getNeighbour(k));

	  if (neigh) {
248
249
	    int j = 0;
	    for (; j < mesh->getGeo(NEIGH); j++)
250
251
	      if (neigh->getNeighbour(j) == *(mel + i))  
		break;
252
	
253
254
255
256
257
	    TEST_EXIT(j < mesh->getGeo(NEIGH))("el %d no neighbour of neighbour %d\n", 
					       mel[i]->getIndex(), neigh->getIndex());
	    mel[i]->setOppVertex(k, j);
	  } else {
	    mel[i]->setOppVertex(k, -1);
258
	  }
259
	}
260
      }
261
    }
262
263
264
265
266

    if (!macroInfo->bound_set) {
      macroInfo->dirichletBoundary();
    }
  
267
    if (mesh->getDim() > 1)
268
269
270
271
272
273
274
      boundaryDOFs(mesh);

    // initial boundary projections
    //if(dim > 1) {
    int numFaces = mesh->getGeo(FACE);
    int dim = mesh->getDim();
    mel = mesh->firstMacroElement();
275
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
276
277
      MacroElement *macroEl = *(mel+i);
      Projection *projector = macroEl->getProjection(0);
278
279
      if (projector && projector->getType() == VOLUME_PROJECTION) {
	for (int j = 0; j <= dim; j++) {
280
281
282
	  projector->project(macroEl->getCoord(j));
	}
      } else {
283
	for (int j = 0; j < mesh->getGeo(EDGE); j++) {
284
	  projector = macroEl->getProjection(numFaces + j);
285
	  if (projector) {
286
287
288
289
290
291
292
293
294
295
296
297
298
	    int vertex0 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 0);
	    int vertex1 = Global::getReferenceElement(dim)->getVertexOfEdge(j, 1);
	    projector->project(macroEl->getCoord(vertex0));
	    projector->project(macroEl->getCoord(vertex1));
	  }
	}
      }
    }
    //}

    macroInfo->fillBoundaryInfo(mesh);

    if (mesh->getNumberOfDOFs(CENTER)) {
299
300
      for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	const_cast<Element*>(mel[i]->getElement())->
301
	  setDOF(mesh->getNode(CENTER), mesh->getDOF(CENTER));
302
      }
303
304
305
306
307
308
    }

    /****************************************************************************/
    /* domain size                                                              */
    /****************************************************************************/

309
    WorldVector<double> x_min, x_max;
310

311
312
313
314
315
316
317
    for (int j = 0; j < Global::getGeo(WORLD); j++) {
      x_min[j] =  1.E30;
      x_max[j] = -1.E30;
    }

    for (int i = 0; i < mesh->getNumberOfVertices(); i++) {
      for (int j = 0; j < Global::getGeo(WORLD); j++) {
318
319
	x_min[j] = std::min(x_min[j], coords[i][j]);
	x_max[j] = std::max(x_max[j], coords[i][j]);
320
321
      }
    }
322

323
    for (int j = 0; j < Global::getGeo(WORLD); j++)
324
325
326
327
328
329
      mesh->setDiameter(j, x_max[j] - x_min[j]);

    if (check) {
      checkMesh(mesh);

      if (mesh->getDim() > 1) {
330
331
332
333
334
	char filenew[128];
	strncpy(filenew, filename, 128); 
	filenew[127] = 0;
	strncat(filenew, ".new", 128);   
	filenew[127] = 0;
335
336
337
338
	macroTest(mesh, filenew);
      }
    }

339
    return macroInfo;
340
341
342
343
344
345
346
347
  }

  /****************************************************************************/
  /*  fill macro info structure and some pointers in mesh ...                 */
  /****************************************************************************/

  void MacroInfo::fill(Mesh *pmesh, int ne, int nv)
  {
348
349
    FUNCNAME("MacroInfo::fill()");

350
351
    TEST_EXIT(pmesh)("no mesh\n");

352
    int dim = pmesh->getDim(); 
353
    mesh = pmesh;
354
355
356
357
358

    mesh->setNumberOfElements(ne);
    mesh->setNumberOfLeaves(ne);
    mesh->setNumberOfVertices(nv);

359
    for (int i = 0; i < ne; i++) {
Thomas Witkowski's avatar
Thomas Witkowski committed
360
      MacroElement *newMacro = new MacroElement(mesh->getDim());
361
362
363
364
      mel.push_back(newMacro);
      mesh->addMacroElement(mel[i]);
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
365
366
367
    dof = new DegreeOfFreedom*[nv];
    coords = new WorldVector<double>[nv];
    mel_vertex = new int*[ne];
368

Thomas Witkowski's avatar
Thomas Witkowski committed
369
370
    for (int i = 0; i < ne; i++)
      mel_vertex[i] = new int[mesh->getGeo(VERTEX)];
371

Thomas Witkowski's avatar
Thomas Witkowski committed
372
    for (int i = 0; i < nv; i++)
373
374
      dof[i] = mesh->getDOF(VERTEX);

375
    for (int i = 0; i < ne; i++) {
376
377
378
      mel[i]->element = mesh->createNewElement();
      (mel)[i]->index = i;

Thomas Witkowski's avatar
Thomas Witkowski committed
379
      if (dim == 3)
380
381
382
383
384
385
386
387
388
	(mel)[i]->elType = 0;
    }
    neigh_set = false;
    bound_set = false;
  }

  void MacroInfo::clear(int ne, int nv)
  {
    for (int i = 0; i < mesh->getNumberOfMacros(); i++)
Thomas Witkowski's avatar
Thomas Witkowski committed
389
      delete [] mel_vertex[i];
390

Thomas Witkowski's avatar
Thomas Witkowski committed
391
392
    delete [] mel_vertex;
    delete [] coords;
393
    coords = NULL;  
Thomas Witkowski's avatar
Thomas Witkowski committed
394
    delete [] dof;
395
    dof = NULL;
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

    mesh = NULL;
    neigh_set = false;
  }

  /****************************************************************************/
  /****************************************************************************/
  /*  tool for reading macro triangulations in ALBERT-format                  */
  /****************************************************************************/
  /****************************************************************************/

  /****************************************************************************/
  /*  read_indices()  reads dim+1 indices from  file  into  id[0-dim],        */
  /*    returns true if dim+1 inputs arguments could be read successfully by  */
  /*    fscanf(), else false                                                  */
  /****************************************************************************/

  int  MacroInfo::read_indices(FILE *file, DimVec<int> &id)
  {
    int dim = mesh->getDim();

Thomas Witkowski's avatar
Thomas Witkowski committed
417
    for (int i = 0; i <= dim; i++)
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
      if (fscanf(file, "%d", &id[i]) != 1)
	return(false);

    return(true);
  }

#define N_KEYS      14
#define N_MIN_KEYS  7
  static const char *keys[N_KEYS] = {
    "DIM",                   //  0 
    "DIM_OF_WORLD",          //  1
    "number of vertices",    //  2
    "number of elements",    //  3
    "vertex coordinates",    //  4
    "element vertices",      //  5
    "element boundaries",    //  6
    "element neighbours",    //  7
    "element type",          //  8
    "projections",           //  9
    "element region",        // 10
    "surface region",        // 11
    "mesh name",             // 12
    "time"                   // 13
  };

  static int get_key_no(const char *key)
  {
445
446
447
    for (int i = 0; i < N_KEYS; i++)
      if (!strcmp(keys[i], key))  
	return(i);
448
449
450
451
452
453
454
455

    return(-1);
  }

#include <ctype.h>

  static const char *read_key(const char *line)
  {
456
457
    static char key[100];
    char *k = key;
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

    while (isspace(*line)) 
	line++;
    while ((*k++ = *line++) != ':');
    *--k = '\0';
  
    return(const_cast<const char *>( key));
  }

  /****************************************************************************/
  /*  read_albert_macro():                                                    */
  /*    read macro triangulation from ascii file in ALBERT format             */
  /*    fills macro_info structure                                            */
  /*    called by read_macro(), fills missing information                     */
  /****************************************************************************/


  void MacroInfo::readAMDiSMacro(const char *filename, Mesh* mesh)
  {
477
478
479
480
481
482
483
484
485
    FUNCNAME("MacroInfo::readAMDiSMacro()");

    FILE *file;
    int dim;
    int dow, nv, ne, j, k;
    double dbl;
    char name[128], line[256];
    int line_no, n_keys, i_key, sort_key[N_KEYS], nv_key, ne_key;
    int key_def[N_KEYS] = {0,0,0,0,0,0,0,0,0,0,0,0};
486
487
488
489
490
491
492
    const char *key;
    DimVec<int> *ind = NULL;

    TEST_EXIT(filename)("no file specified; filename NULL pointer\n");
    TEST_EXIT(strlen(filename) < static_cast<unsigned int>(127))
      ("can only handle filenames up to 127 characters\n");

493
494
    file = fopen(filename, "r");
    TEST_EXIT(file)("cannot open file %s\n", filename);
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    strncpy(name, filename, 127);

    /****************************************************************************/
    /*  looking for all keys in the macro file ...                              */
    /****************************************************************************/

    line_no = n_keys = 0;
    while (fgets(line, 255, file)) {
	line_no++;
	if (!strchr(line, ':'))  continue;
	key = read_key(line);
	i_key = get_key_no(key);
	TEST_EXIT(i_key >= 0)
	  ("macro file %s must not contain key %s on line %d\n",
	   name, key, line_no);
	TEST_EXIT(!key_def[i_key])
	  ("key %s defined second time on line %d in file %s\n");

	sort_key[n_keys++] = i_key;
	key_def[i_key] = true;
    }

    fclose(file);
    for (i_key = 0; i_key < N_MIN_KEYS; i_key++) {
	for (j = 0; j < n_keys; j++)
	    if (sort_key[j] == i_key)  break;
	TEST_EXIT(j < n_keys)("You do not have specified data for %s in %s\n",
			      keys[i_key], name);

	for (j = 0; j < n_keys; j++)
	  if (sort_key[j] == 2)  break;
	nv_key = j;
	for (j = 0; j < n_keys; j++)
	  if (sort_key[j] == 3)  break;
	ne_key = j;
    
	switch(i_key) {
	    case 0:
	    case 1:
		TEST_EXIT(sort_key[i_key] < 2)
		    ("You have to specify DIM or mesh->getGeo(WORLD) before all other data\n");
		break;
	    case 4: 
		TEST_EXIT(nv_key < i_key)
		    ("Before reading data for %s, you have to specify the %s in file\n",
		     keys[4], keys[2], name);
		break;
	    case 5: 
		TEST_EXIT(nv_key < i_key  &&  ne_key < i_key)
		    ("Before reading data for %s, you have to specify the %s and %s in file %s\n",
		     keys[5], keys[3], keys[2], name);
	    case 6:
	    case 7:
	    case 8:
		TEST_EXIT(ne_key < i_key)
		    ("Before reading data for %s, you have to specify the %s in file %s\n",
		     keys[i_key], keys[3], name);
	}
    }

    for (i_key = 0; i_key < N_KEYS; i_key++)
      key_def[i_key] = false;

    /****************************************************************************/
    /*  and now, reading data ...                                               */
    /****************************************************************************/
	
562
563
564
565
    file = fopen(name, "r");
    TEST_EXIT(file)("cannot open file %s\n",name);

    int result;
566
567
568
569
570

    for (i_key = 0; i_key < n_keys; i_key++) {

	switch(sort_key[i_key]) {
	  case 0:
571
572
	    result = fscanf(file, "%*s %d", &dim);
	    TEST_EXIT(result == 1)
573
574
	      ("cannot read DIM correctly in file %s\n", name);

Thomas Witkowski's avatar
Thomas Witkowski committed
575
	    ind = new DimVec<int>(dim, NO_INIT);
576
577
578
579

	    key_def[0] = true;
	    break;
	  case 1:
580
581
	    result = fscanf(file, "%*s %d", &dow);
	    TEST_EXIT(result == 1)
582
583
584
585
586
587
588
589
	      ("cannot read Global::getGeo(WORLD) correctly in file %s\n", name);
	    TEST_EXIT(dow == Global::getGeo(WORLD))
	      ("dimension of world = %d != Global::getGeo(WORLD) = %d\n", 
	       dow, Global::getGeo(WORLD));

	    key_def[1] = true;
	    break;
	  case 2:
590
591
	    result = fscanf(file, "%*s %*s %*s %d", &nv);
	    TEST_EXIT(result == 1)
592
593
594
595
596
597
598
599
600
	      ("cannot read number of vertices correctly in file %s\n", name);
	    TEST_EXIT(nv > 0)
	      ("number of vertices = %d must be bigger than 0\n", nv);

	    key_def[2] = true;
	    if (key_def[3])
	      fill(mesh, ne, nv);
	    break;
	  case 3:
601
602
	    result = fscanf(file, "%*s %*s %*s %d", &ne);
	    TEST_EXIT(result == 1)
603
604
605
606
607
608
609
610
611
612
	      ("cannot read number of elements correctly in file %s\n", name);
	    TEST_EXIT(ne > 0)
	      ("number of elements = %d must be bigger than 0\n", ne);

	    key_def[3] = true;
	    if (key_def[2])
	      fill(mesh, ne, nv);
	    break;
	  case 4:
	    fscanf(file, "%*s %*s");
613
614
	    for (int i = 0; i < nv; i++) {
	      for (j = 0; j <Global::getGeo(WORLD) ; j++) {
615
616
		result = fscanf(file, "%lf", &dbl);
		TEST_EXIT(result == 1)
617
618
		  ("error while reading coordinates, check file %s\n", name);
		coords[i][j] = dbl;
619
	      }
620
	    }
621
622
623
624
625
626
627
628
	    key_def[4] = true;
	    break;
	  case 5:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* global number of vertices on a single element                            */
	    /****************************************************************************/

629
	    for (int i = 0; i < ne; i++) {
630
631
632
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
		("cannot read vertex indices of element %d in file %s\n",  i, name);
633

634
635
636
	      for (k = 0; k < mesh->getGeo(VERTEX); k++)
		mel_vertex[i][k] = (*ind)[k];
	    }
637
638
639
640
641
642
643
644

	    key_def[5] = true;
	    break;
	  case 6:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL boundary pointers                                                    */
	    /****************************************************************************/
645
	    for (int i = 0; i < ne; i++) {  
646
647
                // boundary information of ith element 

648
649
650
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
		("cannot read boundary type of element %d in file %s\n", i, name);
651

652
653
654
655
	      // fill boundary of macro-element
	      MacroReader::fillMelBoundary(mesh, 
					   mel[i], 
					   VecConv<int,NEIGH,PARTS>::convertVec((*ind), mesh));
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
	    }

	    this->fillBoundaryInfo(mesh);
                   
	    bound_set = true;
	    key_def[6] = true;
	    break;
	  case 7:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* fill MEL neighbour pointers:                                             */
	    /*   if they are specified in the file: read them from file,                */
	    /*   else init them by a call of fill_mel_neighbour()                       */
	    /****************************************************************************/
	    neigh_set = true;
671
	    for (int i = 0; i < ne; i++) {
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                //  neighbour information about ith element

		if (read_indices(file, *ind))
		  MacroReader::fillMelNeigh(mel[i], mel, 
					    VecConv<int,NEIGH,PARTS>::convertVec((*ind), 
										 mesh));
		else {
		  neigh_set = false; /* setting of neighbours fails :-( */
		  break;
		}
	      }

	    key_def[7] = true;
	    break;
	  case 8:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL elType                                                               */
	    /****************************************************************************/

	    if (dim == 2 || dim == 1)
	      ERROR("there is no element type in 2d and 2d; ignoring data for elType\n");

695
	    for (int i = 0; i < ne; i++) {
696
697
698
699
700
701
	      result = fscanf(file, "%d", &j);
	      TEST_EXIT(result == 1)
		("cannot read elType of element %d in file %s\n",
		 i, name);
	      if (dim == 3) {
		(mel)[i]->elType = j;
702
	      }
703
	    }
704
705
706
707
708
709
710
711
712
713

	    key_def[8] = true;
	    break;
	  case 9:
	    {
	      fscanf(file, "%*s");

	      int numFaces = mesh->getGeo(FACE);
	      int numEdgesAtBoundary = 0;

714
	      for (k = 1; k < dim; k++) {
715
716
717
		numEdgesAtBoundary += k;
	      }

718
	      for (int i = 0; i < ne; i++) {
719
720
		result = read_indices(file, *ind);
		TEST_EXIT(result)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
		  ("cannot read boundary projector of element %d in file %s\n", i, name);
	
		Projection *projector = Projection::getProjection((*ind)[0]);

		if(projector && projector->getType() == VOLUME_PROJECTION) {
		  mel[i]->setProjection(0, projector);
		} else { // boundary projection
		  for(j = 0; j < mesh->getGeo(NEIGH); j++) {
		    projector = Projection::getProjection((*ind)[j]);
		    if(projector) {
		      mel[i]->setProjection(j, projector);
		      if(dim > 2) {
			for(k = 0; k < numEdgesAtBoundary; k++) {
			  int edgeNr = Global::getReferenceElement(dim)->getEdgeOfFace(j, k);
			  mel[i]->setProjection(numFaces + edgeNr, projector);
			}
		      }
		    }
		  }
		}
	      }
	    }
	    key_def[9] = true;
	    break;
	  case 10:
	    fscanf(file, "%*s %*s");
	    /****************************************************************************/
	    /* MEL regions                                                              */
	    /****************************************************************************/

751
	    for (int i = 0; i < ne; i++) {
752
753
	      result = fscanf(file, "%d", &j);
	      TEST_EXIT(result == 1)
754
		("cannot read region of element %d in file %s\n", i, name);
755
	      if (j >= 0) {
756
757
		Element *el = mel[i]->getElement();
		ElementRegion_ED *elementRegion = 
Thomas Witkowski's avatar
Thomas Witkowski committed
758
		  new ElementRegion_ED(el->getElementData());
759
760
761
762
763
764
765
766
		elementRegion->setRegion(j);
		el->setElementData(elementRegion);
	      }
	    }
	    key_def[10] = true;
	    break;
	  case 11:
	    fscanf(file, "%*s %*s");
767
	    for (int i = 0; i < ne; i++) {
768
769
	      result = read_indices(file, *ind);
	      TEST_EXIT(result)
770
771
772
773
774
775
776
		("cannot read surface regions of element %d in file %s\n", i, name);

	      Element *el = mel[i]->getElement();

	      for(j = 0; j < mesh->getGeo(NEIGH); j++) {
		if((*ind)[j] >= 0) {
		  SurfaceRegion_ED *surfaceRegion = 
Thomas Witkowski's avatar
Thomas Witkowski committed
777
		    new SurfaceRegion_ED(el->getElementData());
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
		  surfaceRegion->setSide(j);
		  surfaceRegion->setRegion((*ind)[j]);
		  el->setElementData(surfaceRegion);
		}
	      }
	    }
	    key_def[11] = true;
	    break;
	  case 12:
	    fscanf(file, "%*s %*s %*s");
	    break;
	  case 13:
	    fscanf(file, "%*s %*s");
	    break;
	  }
      }

795
    if (ind) {
Thomas Witkowski's avatar
Thomas Witkowski committed
796
      delete ind;
797
798
    }

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    fclose(file);
  }


  int macro_type(const char *filename, const char *type)
  {
    const char *fn, *t;
  
    if (strlen(filename) <= strlen(type))
      return(false);
  
    fn = filename;
    while (*fn) fn++;
    t = type;
    while (*t) t++;
  
    while (t != type  &&  *t == *fn) t--;
  
    return(t == type);
  }


  /****************************************************************************/
  /*  sets the boundary of all edges/faces with no neigbour to a straight     */
  /*  line/face with Dirichlet boundary type                                  */
  /****************************************************************************/

  void MacroInfo::dirichletBoundary()
  {
828
829
    for (int i = 0; i < static_cast<int>( mel.size()); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
830
831
832
833
834
835
836
837
838
839
840
841
842
	if (mel[i]->neighbour[k])
	  mel[i]->boundary[k] = INTERIOR;
	else
	  mel[i]->boundary[k] = DIRICHLET;
      }
    }
  }


  void MacroInfo::fillBoundaryInfo(Mesh *mesh)
  {
    int i,j,k, nv = mesh->getNumberOfVertices();

843
    std::deque<MacroElement*>::iterator melIt;
844

Thomas Witkowski's avatar
Thomas Witkowski committed
845
    BoundaryType *bound = new BoundaryType[nv];
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

    int dim = mesh->getDim();

    switch(dim) {
    case 1:
      break;
    case 2:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, ++i) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    if ((*melIt)->getBoundary(j) != INTERIOR) {
	      if ((*melIt)->getBoundary(j) >= DIRICHLET) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		bound[j1] = 
		  max(bound[j1], (*melIt)->getBoundary(j));
		bound[j2] = 
		  max(bound[j2], (*melIt)->getBoundary(j));
	      } 
	      else if ((*melIt)->getBoundary(j) <= NEUMANN) {
		int j1 = mel_vertex[i][(j+1)%3];
		int j2 = mel_vertex[i][(j+2)%3];

		if (bound[j1] != INTERIOR)
		  bound[j1] = 
		    max(bound[j1], (*melIt)->getBoundary(j));
		else
		  bound[j1] = (*melIt)->getBoundary(j);

		if (bound[j2] != INTERIOR)
		  bound[j2] = 
		    max(bound[j2], (*melIt)->getBoundary(j));
		else
		  bound[j2] = (*melIt)->getBoundary(j);
	      }
	    }
	  }
	}

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(3 + j, bound[mel_vertex[i][j]]);
	}
      break;
    case 3:
      for (i = 0; i < nv; i++)
	bound[i] = INTERIOR;

      for (i=0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(NEIGH); j++) {
	    for (k = 1; k < 4; k++)
	      bound[mel_vertex[i][(j+k)%4]] =
		((*melIt)->getBoundary(j) != INTERIOR) ?
		newBound((*melIt)->getBoundary(j),
			 bound[mel_vertex[i][(j+k)%4]]) :
		//(*melIt)->getBoundary(j)->
		//newVal(bound[data->mel_vertex[i][(j+k)%4]]) :
		bound[mel_vertex[i][(j+k)%4]];
	  }
	}

      for (i = 0, melIt = mesh->firstMacroElement(); 
	   melIt != mesh->endOfMacroElements(); 
	   ++melIt, i++) 
	{
	  for (j = 0; j < mesh->getGeo(VERTEX); j++)
	    (*melIt)->setBoundary(10 + j, bound[mel_vertex[i][j]]);
	}
      break;
    default: ERROR_EXIT("invalid dim\n");
    }

Thomas Witkowski's avatar
Thomas Witkowski committed
930
    delete [] bound;
931
932
933
934
  }

  void MacroReader::computeNeighbours(Mesh *mesh)
  {
935
    FUNCNAME("MacroReader::computeNeighbours()");
936

937
    int dim = mesh->getDim();
938
    FixVec<DegreeOfFreedom*, DIMEN> dof(dim, NO_INIT);
939

940
941
942
943
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	mesh->getMacroElement(i)->setOppVertex(k, AMDIS_UNDEFINED);
	mesh->getMacroElement(i)->setNeighbour(k, NULL);
944
      }
945
    }
946

947
948
949
950
951
952
953
    for (int i = 0; i < mesh->getNumberOfLeaves(); i++) {
      for (int k = 0; k < mesh->getGeo(NEIGH); k++) {
	if (mesh->getMacroElement(i)->getBoundary(k) != INTERIOR) {
	  mesh->getMacroElement(i)->setNeighbour(k, NULL);
	  mesh->getMacroElement(i)->setOppVertex(k, -1);
	  continue;
	}
954

955
956
957
958
959
960
961
962
	if (mesh->getMacroElement(i)->getOppVertex(k) == AMDIS_UNDEFINED) {
	  if (dim == 1) {
	    dof[0] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						  getElement()->getDOF(k));
	  } else {
	    for (int l = 0; l < dim; l++)
	      dof[l] = const_cast<DegreeOfFreedom*>(mesh->getMacroElement(i)->
						    getElement()->
963
						    getDOF((k + l + 1) % (dim + 1)));
964
	  }
965
966
967
968
969
970
971
972
973
974
975
976
977
	  
	  int j = 0;
	  for (j = i + 1; j < mesh->getNumberOfLeaves(); j++) {
	    int m = mesh->getMacroElement(j)->getElement()->oppVertex(dof);
	    if (m != -1) {
	      mesh->getMacroElement(i)->setNeighbour(k, mesh->getMacroElement(j));
	      mesh->getMacroElement(j)->setNeighbour(m, mesh->getMacroElement(i));
	      mesh->getMacroElement(i)->setOppVertex(k, m);
	      mesh->getMacroElement(j)->setOppVertex(m, k);
	      break;
	    }
	  }

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
	  if (j >= mesh->getNumberOfLeaves()) {
	    std::cout << "----------- ERROR ------------" << std::endl;
	    std::cout << "Cannot find neighbour " << k << " of element " << i << std::endl;
	    std::cout << "  dim = " << dim << std::endl;
	    std::cout << "  coords of element = ";
	    for (int l = 0; l <= dim; l++) {
	      std::cout << mesh->getMacroElement(i)->getCoord(l);
	      if (l < dim) {
		std::cout << " / ";
	      }
	    }
	    std::cout << std::endl;
	    std::cout << "  dofs = ";
	    for (int l = 0; l < dim; l++) {
	      std::cout << *(dof[l]) << " ";
	    }
	    std::cout << std::endl;

	    ERROR_EXIT("\n");
	  }    
998
	}
999
      }
1000
    }
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
  }


  /****************************************************************************/
  /*  boundaryDOFs:                                                           */
  /*  adds dof's at the edges of a given macro triangulation and calculates   */
  /*  the number of edges                                                     */
  /****************************************************************************/

  void MacroReader::boundaryDOFs(Mesh *mesh)
  {
1012
1013
1014
1015
1016
    FUNCNAME("Mesh::boundaryDOFs()");

    int lnode = mesh->getNode(EDGE);
    int k, lne = mesh->getNumberOfLeaves();
    int max_n_neigh = 0, n_neigh, ov;
1017
    std::deque<MacroElement*>::iterator mel;
1018
    const MacroElement* neigh;
1019
    DegreeOfFreedom *dof;
1020
1021
1022
1023
1024
1025
1026
1027

    mesh->setNumberOfEdges(0);
    mesh->setNumberOfFaces(0);

    int dim = mesh->getDim();

    switch(dim) {
    case 2:
1028
      for (mel = mesh->firstMacroElement(); mel != mesh->endOfMacroElements(); mel++) {
1029
1030
1031
1032
1033
1034
	// check for periodic boundary
	Element *el = const_cast<Element*>((*mel)->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);

1035
	if (ed) {
1036
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1037
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1038
1039
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1040
1041
	  for (it = periodicInfos.begin(); it != end; ++it) {
	    if (it->type != 0) {
1042
1043
1044
1045
1046
	      periodic[it->elementSide] = true;
	    }
	  }
	}

1047
	for (int i = 0; i < mesh->getGeo(NEIGH); i++) {
1048
	  if (!(*mel)->getNeighbour(i) || 
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
	      ((*mel)->getNeighbour(i)->getIndex() < (*mel)->getIndex())) {

	    mesh->incrementNumberOfEdges(1);

	    if (mesh->getNumberOfDOFs(EDGE)) {
	      dof = el->setDOF(lnode + i, mesh->getDOF(EDGE));
      
	      if ((*mel)->getNeighbour(i)) {
		Element *neigh = const_cast<Element*>((*mel)->getNeighbour(i)->getElement());

		if (periodic[i]) {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), mesh->getDOF(EDGE));
		} else {
		  neigh->setDOF(lnode + (*mel)->getOppVertex(i), dof);
1063
1064
		}
	      }
1065
1066
	    }
	  }  
1067
1068
1069
1070
1071
1072
	}
      }
      break;
    case 3:
      lnode = mesh->getNode(FACE);
      mel = mesh->firstMacroElement();
1073
      for (int i = 0; i < lne; i++) {
1074
1075
1076
1077
1078
1079
1080
1081

	// check for periodic boundary
	Element *el = const_cast<Element*>((*(mel+i))->getElement());
	ElementData *ed = el->getElementData(PERIODIC);

	DimVec<bool> periodic(dim, DEFAULT_VALUE, false);
      
	if(ed) {
1082
	  std::list<LeafDataPeriodic::PeriodicInfo> &periodicInfos = 
1083
	    dynamic_cast<LeafDataPeriodic*>(ed)->getInfoList();
1084
1085
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator it;
	  std::list<LeafDataPeriodic::PeriodicInfo>::iterator end = periodicInfos.end();
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
	  for(it = periodicInfos.begin(); it != end; ++it) {
	    if(it->type != 0) {
	      periodic[it->elementSide] = true;
	    }
	  }
	}

	for (k = 0; k < mesh->getGeo(EDGE); k++) {      
	  /*********************************************************************/
	  /* check for not counted edges                                       */
	  /*********************************************************************/
	  n_neigh = 1;

	  if (newEdge(mesh, (*(mel+i)), k, &n_neigh/*, periodicEdge*/)) {
	    mesh->incrementNumberOfEdges(1);
	    max_n_neigh = max(max_n_neigh, n_neigh);
	  }
	}
      
	for (k = 0; k < mesh->getGeo(NEIGH); k++) {
	  neigh = (*(mel+i))->getNeighbour(k);
	  /*********************************************************************/
	  /* face is counted and dof is added by the element with bigger index */
	  /*********************************************************************/
	  if (neigh  &&  (neigh->getIndex() > (*(mel+i))->getIndex()))  continue;
	
	  mesh->incrementNumberOfFaces(1);
	
	  if (mesh->getNumberOfDOFs(FACE)) {
	    TEST_EXIT(!(*(mel+i))->getElement()->getDOF(lnode+k))
	      ("dof %d on element %d already set\n", 
	       lnode+k, (*(mel+i))->getIndex());
	  
	    const_cast<Element*>((*(mel+i))->getElement())->setDOF(lnode+k, 
								   mesh->getDOF(FACE));

	    if (neigh) {
	      ov = (*(mel+i))->getOppVertex(k);
	      TEST_EXIT(!neigh->getElement()->getDOF(lnode+ov))
		("dof %d on neighbour %d already set\n", 
		 lnode+ov, neigh->getIndex());
	    
	      Element *neighEl = 
		const_cast<Element*>((*(mel+i))->getNeighbour(k)->getElement());

	      if (periodic[k]) {
		neighEl->setDOF(lnode+ov, mesh->getDOF(FACE));
	      } else {
		neighEl->setDOF(lnode+ov, const_cast<int*>((*(mel+i))->getElement()->
							   getDOF(lnode+k)));
	      }
	    }
	  }
	}
      }
      break;
    default: ERROR_EXIT("invalid dim\n");
    }
    
1145
    if (3 == dim) {
Thomas Witkowski's avatar
Thomas Witkowski committed
1146
      mesh->setMaxEdgeNeigh(std::max(8, 2 * max_n_neigh));
1147
    } else {
Thomas Witkowski's avatar
Thomas Witkowski committed
1148
      mesh->setMaxEdgeNeigh(dim - 1);    
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    }
  }

  /* 
     testet mesh auf auftretende Zyklen
  
     wenn Zyklus auftritt:
     ordnet Eintraege in MacroElement-Struktur um, so dass kein Zyklus auftritt
     erzeugt neue Macro-Datei nameneu mit umgeordnetem Netz 
     (wenn nameneu=NULL wird keine MAcro-Datei erzeugt)
  */      

  void MacroReader::macroTest(Mesh *mesh, const char *nameneu)
  {
1163
    FUNCNAME("MacroReader::macroTest()");
1164
   
1165
1166
1167
1168
1169
1170
1171
    int i = macrotest(mesh);

    if (i >= 0) {
      ERROR("There is a cycle beginning in macro element %d\n", i);
      ERROR("Entries in MacroElement structures get reordered\n");
      umb(NULL, mesh, umbVkantMacro);

Thomas Witkowski's avatar
Thomas Witkowski committed
1172
      if (nameneu)
1173
1174
	ERROR_EXIT("mesh->feSpace\n");
    }
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
  }
  
  /****************************************************************************/
  /*  macro_test():                              Author: Thomas Kastl (1998)  */
  /****************************************************************************/
  /*
    testet mesh auf auftretende Zyklen
  
    wenn mesh zyklenfrei -> -1
    sonst ->  globaler Index des Macroelementes bei dem ein Zyklus beginnt 
  */

  int MacroReader::macrotest(Mesh *mesh)
  {
1189
    FUNCNAME("MacroReader::macrotest()");
1190
1191
1192

    int *test;
    int *zykl;
1193
    std::deque<MacroElement*>::const_iterator macro,mac;
1194
    int flg;
1195
    std::deque<MacroElement*>::const_iterator macrolfd;
1196
1197
1198
    int zykstart;
    int dim = mesh->getDim();

Thomas Witkowski's avatar
Thomas Witkowski committed
1199
1200
    test = new int[mesh->getNumberOfMacros()];
    zykl = new int[mesh->getNumberOfMacros()];
1201
 
Thomas Witkowski's avatar
Thomas Witkowski committed
1202
    for (int i = 0; i < mesh->getNumberOfMacros(); i++)
1203
      test[i] = 0;
1204

1205
1206
    zykstart = -1;
    macrolfd = mesh->firstMacroElement();
1207

1208
1209
1210
1211
1212
1213
1214
    while (macrolfd != mesh->endOfMacroElements()) {
      if (test[(*macrolfd)->getIndex()] == 1) {
	macrolfd++;
      } else {
	for (int i = 0; i < mesh->getNumberOfMacros(); i++) {
	  zykl[i] = 0;
	}
1215
    
1216
1217
1218
1219
1220
1221
1222
1223
	macro = macrolfd;
	flg = 2;
	do {
	  if (zykl[(*macro)->getIndex()] == 1) {
	    flg = 0;
	    zykstart = (*macro)->getIndex();
	  } else {
	    zykl[(*macro)->getIndex()] = 1;
1224
      
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
	    if (test[(*macro)->getIndex()] == 1) {
	      flg = 1;
	    } else if ((*macro)->getNeighbour(dim) == NULL) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	    }
	    else if ((*macro) == (*macro)->getNeighbour(dim)->getNeighbour(dim)) {
	      flg = 1;
	      test[(*macro)->getIndex()] = 1;
	      test[(*macro)->getNeighbour(dim)->getIndex()] = 1;
	    } else {
	      for (mac = mesh->firstMacroElement();
		   (*mac)!=(*macro)->getNeighbour(dim);
		   mac++);
	      macro = mac;
	    } 
	  }	  
	} while(flg == 2);
1243
 
1244
1245
1246
1247
1248
	if (flg == 1) {
	  macrolfd++;
	} else  { 
	  macrolfd=mesh->endOfMacroElements();
	}
1249
      }
1250
    }
1251
  
Thomas Witkowski's avatar
Thomas Witkowski committed
1252
1253
    delete [] zykl;
    delete [] test;
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
 
    return zykstart;
  }

  //   waehlt geeignete Verfeinerungskanten, so dass kein Zyklus auftritt (recumb)

  //   ele     Integer-Vektor der Dimension Anzahl der Macro-Elemente
  //           zur Speicherung der neuen Verfeinerungskanten
  //           (wird nur benoetigt, wenn umbvk=umb_vkant_macrodat) 
  
  //   umbvk   Fkt. zur Neuordnung der Verfeinerungskanten
  //           = umb_vkant_macro :
  //               Eintraege in MacroElement-Struktur und Eintraege in macro->el
  //               werden tatsaechlich umgeordnet
  //               -> ALBERT-Routine write_macro kann zum erzeugen einer
  //                  neuen Macro-Datei angewendet werden 
  //           = umb_vkant_macrodat :
  //               Eintraege werden nicht veraendert, es werden nur die lokalen
  //               Indices der Kanten, die zu Verfeinerungskanten werden im
  //               Integer-Vektor ele abgespeichert
  //               -> print_Macrodat zur Erzeugung einer zyklenfreien neuen
  //                  Macro-Datei kann angewendet werden

  void MacroReader::umb(int *ele, Mesh *mesh,
			void (*umbvk)(Mesh*,MacroElement*,int,int*))
  {
    FUNCNAME("MacroReader::umb");

Thomas Witkowski's avatar
Thomas Witkowski committed
1282
    int *test = new int[mesh->getNumberOfMacros()];
1283
  
Thomas Witkowski's avatar
Thomas Witkowski committed
1284
1285
    for (int i = 0; i < static_cast<int>(mesh->getNumberOfMacros()); i++)
      test[i] = 0;
1286

Thomas Witkowski's avatar
Thomas Witkowski committed
1287
    recumb(mesh, (*mesh->firstMacroElement()), NULL, test, 0, 0, ele, umbvk);
1288

Thomas Witkowski's avatar
Thomas Witkowski committed
1289
    delete [] test;
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
  }

  bool MacroReader::newEdge(Mesh *mesh, MacroElement *mel,
			    int mel_edge_no, int *n_neigh)
  {
    FUNCNAME("MacroElement::newEdge"); 
    MacroElement    *nei;
    const DegreeOfFreedom *dof[2];
    DegreeOfFreedom *edge_dof = NULL;
    int             j, k, opp_v, mel_index, node=0;
    BoundaryType    lbound = INTERIOR;
    Projection *lproject = NULL;
    const int       max_no_list_el = 100;
    BoundaryType *list_bound[100];
    Projection **list_project[100];
    Element *el = const_cast<Element*>(mel->getElement());
    int edge_no = mel_edge_no;

    static int  next_el[6][2] = {{3,2},{1,3},{1,2},{0,3},{0,2},{0,1}};

    int vertices = mesh->getGeo(VERTEX);

    mel_index = mel->getIndex();

    list_bound[0] = &(mel->boundary[mesh->getGeo(FACE)+edge_no]);
    list_project[0] = &(mel->projection[mesh->getGeo(FACE)+edge_no]);

    if (mesh->getNumberOfDOFs(EDGE)) {
      node = mesh->getNode(EDGE);
      if (el->getDOF(node+edge_no)) {
	/****************************************************************************/
	/*  edge was counted by another macro element and dof was added on the      */
	/*  complete patch                                                          */
	/****************************************************************************/
	return false;
      } else {
	edge_dof = el->setDOF(node+edge_no,mesh->getDOF(EDGE));
      }
    }

    for (j = 0; j < 2; j++) {
      dof[j] = el->getDOF(el->getVertexOfEdge(edge_no, j));
    }


    /****************************************************************************/
    /*  first look for all neighbours in one direction until a boundary is      */
    /*  reached :-( or we are back to mel :-)                                   */
    /*  if the index of a neighbour is smaller than the element index, the edge */
    /*  is counted by this neighbour, return 0.                                 */
    /*  If we are back to element, return 1, to count the edge                  */
    /****************************************************************************/

    nei = mel->getNeighbour(next_el[edge_no][0]);
    opp_v = mel->getOppVertex(next_el[edge_no][0]);


    if(mel->getBoundary(next_el[edge_no][0])) {
      lbound = newBound(mel->getBoundary(next_el[edge_no][0]), lbound);
      lproject = mel->getProjection(next_el[edge_no][0]);
    }

    while (nei  &&  nei != mel) {
      for (j = 0; j < vertices; j++)
	if (nei->getElement()->getDOF(j) == dof[0])  break;
      for (k = 0; k < vertices; k++)
	if (nei->getElement()->getDOF(k) == dof[1])  break;

      // check for periodic boundary
      if(j == 4 || k == 4) {
	nei = NULL;
	break;
      }

      if (mesh->getNumberOfDOFs(EDGE))
	TEST_EXIT(nei->index > mel_index)
	  ("neighbour index %d < element index %d\n", nei->getIndex(), mel_index);

      if (!mesh->getNumberOfDOFs(EDGE) &&  nei->getIndex() < mel_index)  return false;

    
      edge_no = Tetrahedron::edgeOfDOFs[j][k];

      TEST_EXIT(*n_neigh < max_no_list_el)
	("too many neigbours for local list\n");

      list_bound[(*n_neigh)] = 
	&(nei->boundary[mesh->getGeo(FACE)+edge_no]);

      list_project[(*n_neigh)++] = 
	&(nei->projection[mesh->getGeo(FACE)+edge_no]);

      if (mesh->getNumberOfDOFs(EDGE))
	{
	  //       if(periodic) {
	  // 	nei->element->setDOF(node+edge_no, mesh->getDOF(EDGE));
	  //       } else {
	  nei->element->setDOF(node+edge_no,edge_dof);
	  //       }
	}

      if (next_el[edge_no][0] != opp_v)
	{
	  if(nei->getBoundary(next_el[edge_no][0])) {
	    lbound = newBound(nei->getBoundary(next_el[edge_no][0]), lbound);
	    Projection *neiProject = nei->getProjection(next_el[edge_no][0]);
	    if(!lproject)
	      lproject = neiProject;
	    else {
	      if(neiProject && (lproject->getID() < neiProject->getID())) {
		lproject = neiProject;
	      }
	    }
	  }
	  opp_v = nei->getOppVertex(next_el[edge_no][0]);
	  nei = nei->getNeighbour(next_el[edge_no][0]);
	}
      else
	{
	  if(nei->getBoundary(next_el[edge_no][1])) {
	    lbound = newBound(nei->getBoundary(next_el[edge_no][1]), lbound);
	    Projection *neiProject = nei->getProjection(next_el[edge_no][1]);	
	    if(!lproject)
	      lproject = neiProject;
	    else {
	      if(neiProject && (lproject->getID() < neiProject->getID())) {
		lproject = neiProject;
	      }
	    }
	  }
	  opp_v = nei->getOppVertex(next_el[edge_no][1]);
	  nei = nei->getNeighbour(next_el[edge_no][1]);
	}
    }
    if (!nei)
      {
	/****************************************************************************/
	/*  while looping around the edge the domain's boundary was reached. Now,   */
	/*  loop in the other direction to the domain's boundary		    */
	/****************************************************************************/
	edge_no = mel_edge_no;

	nei = mel->getNeighbour(next_el[edge_no][1]);
	opp_v = mel->getOppVertex(next_el[edge_no][1]);
	if(mel->getBoundary(next_el[edge_no][1])) {
	  lbound = newBound(mel->getBoundary(next_el[edge_no][1]), lbound); 
	  Projection *neiProject =  mel->getProjection(next_el[edge_no][1]);
	  if(!lproject)
	    lproject = neiProject;
	  else {
	    if(neiProject && (lproject->getID() < neiProject->getID())) {
	      lproject = neiProject;
	    }
	  }
	}
	while (nei)
	  {
	    for (j = 0; j < vertices; j++)
	      if (nei->getElement()->getDOF(j) == dof[0])  break;
	    for (k = 0; k < vertices; k++)
	      if (nei->getElement()->getDOF(k) == dof[1])  break;

	    // check for periodic boundary
	    if(j == 4 || k == 4) {
	      return false;
	    }

	    if (mesh->getNumberOfDOFs(EDGE))
	      TEST_EXIT(nei->getIndex() > mel_index)
		("neighbour index %d < element index %d\n", nei->getIndex(),
		 mel_index);