compute_displacement.cc 4.53 KB
Newer Older
Thomas Witkowski's avatar
Thomas Witkowski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include "AMDiS.h"

using namespace std;
using namespace AMDiS;

// ===========================================================================
// ===== main program ========================================================
// ===========================================================================

int main(int argc, char* argv[])
{
  FUNCNAME("main");

  // ===== init parameters =====
  Parameters::init(false, "./init/compute_displacement.1d");

  // ===== create and init the scalar problem ===== 
  ProblemVec vecellipt("vecellipt");
  vecellipt.initialize(INIT_ALL);

  // Works only with global refinement = 1 and one macro element, i.e., two
  // leave elements in the starting mesh.
  TEST_EXIT(vecellipt.getMesh(0)->getNumberOfLeaves() == 2)("Wrong macro mesh\n!");
  TEST_EXIT(vecellipt.getMesh(1)->getNumberOfLeaves() == 2)("Wrong macro mesh\n!");

  // Construct the following mesh (shown as a hierachy tree, a is the macro
  // element, and b and c construct the starting mesh):
  //
  //                                a
  //                               / \
  //                              b   c
  //                             / \
  //                            /   \
  //                           d     e
  //                          / \   / \
  //                         f   g h   i
  //                        / \       / \
  //                       j   k     l   m
  //                          / \   / \
  //                         n   o p   q
  //                                  / \
  //                                 r   s
  //                                
  // The nodes {j, n, o, g, h, p, r, s, m , c} are the leave elements of the
  // resulting mesh.

  Mesh *mesh = vecellipt.getMesh(0);
  Element *el = mesh->getMacroElement(0)->getElement();
  el->getChild(0)->setMark(1);
  vecellipt.getRefinementManager(0)->refineMesh(mesh);

  el->getChild(0)->getChild(0)->setMark(1);
  el->getChild(0)->getChild(1)->setMark(1);
  vecellipt.getRefinementManager(0)->refineMesh(mesh);

  el->getChild(0)->getChild(0)->getChild(0)->setMark(1);
  el->getChild(0)->getChild(1)->getChild(1)->setMark(1);
  vecellipt.getRefinementManager(0)->refineMesh(mesh);

  el->getChild(0)->getChild(0)->getChild(0)->getChild(1)->setMark(1);
  el->getChild(0)->getChild(1)->getChild(1)->getChild(0)->setMark(1);
  vecellipt.getRefinementManager(0)->refineMesh(mesh);

  el->getChild(0)->getChild(1)->getChild(1)->getChild(0)->getChild(1)->setMark(1);
  vecellipt.getRefinementManager(0)->refineMesh(mesh);

  TEST_EXIT(mesh->getNumberOfLeaves() == 10)("Wrong number of leaves!\n");


  // Create an array with the expected results of dual traverse. In i-th
  // step we check the level of the large element (tmp[0]), the level of
  // the small element (tmp[1]) and the displacement (tmp[2]).
  std::vector<std::vector<int> > correctResults(0);
  std::vector<int> tmp(3);
  tmp[0] = 1; tmp[1] = 4; tmp[2] = 0;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 5; tmp[2] = 2;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 5; tmp[2] = 3;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 3; tmp[2] = 1;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 3; tmp[2] = 2;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 5; tmp[2] = 12;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 6; tmp[2] = 26;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 6; tmp[2] = 27;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 4; tmp[2] = 7;
  correctResults.push_back(tmp);
  tmp[0] = 1; tmp[1] = 1; tmp[2] = 0;
  correctResults.push_back(tmp);


  // Create everything for the dual traverse, start the dual traverse and
  // compare the result with the expected ones.

  DualTraverse dualTraverse;
  ElInfo *rowElInfo, *colElInfo;
  ElInfo *largeElInfo, *smallElInfo;
  Flag flag = Mesh::CALL_LEAF_EL | Mesh::FILL_COORDS | Mesh::FILL_DET |
    Mesh::FILL_GRD_LAMBDA | Mesh::FILL_NEIGH;
  int i = 0;

  bool cont = dualTraverse.traverseFirst(vecellipt.getMesh(0), 
					 vecellipt.getMesh(1), 
					 -1, -1,
					 flag, flag,
					 &rowElInfo, &colElInfo,
					 &smallElInfo, &largeElInfo);

  while (cont) {
    TEST_EXIT(correctResults[i][0] == largeElInfo->getLevel())
      ("Wrong level of large element!\n");
    TEST_EXIT(correctResults[i][1] == smallElInfo->getLevel())
      ("Wrong level of small element!\n");
    TEST_EXIT(correctResults[i][2] == smallElInfo->getDisplacement())
      ("Wrong displacement of small element!\n");

    i++;
    cont = dualTraverse.traverseNext(&rowElInfo, &colElInfo,
				     &smallElInfo, &largeElInfo);    
  }

  return 0;
}