Element.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  crystal growth group                                                  ==
// ==                                                                        ==
// ==  Stiftung caesar                                                       ==
// ==  Ludwig-Erhard-Allee 2                                                 ==
// ==  53175 Bonn                                                            ==
// ==  germany                                                               ==
// ==                                                                        ==
// ============================================================================
// ==                                                                        ==
// ==  http://www.caesar.de/cg/AMDiS                                         ==
// ==                                                                        ==
// ============================================================================

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

// ============================================================================
// ===== includes =============================================================
// ============================================================================

#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"

namespace AMDiS {

  // ============================================================================
  // ===== forward declarations =================================================
  // ============================================================================

  class Mesh;
  class DOFAdmin;
  template<typename T> class WorldVector;
  class CoarseningManager;

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  // ============================================================================
  // ===== class Element ========================================================
  // ============================================================================

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
    /** \brief
     * private standard constructor because an Element must know his Mesh
     */
    Element() {};
  public:
    /** \brief
     * constructs an Element which belongs to Mesh
     */
    Element(Mesh *);

    /** \brief
     * copy constructor
     */
    Element(const Element& old);

    /** \brief
     * destructor
     */ 
    virtual ~Element();

    // ===== getting methods ======================================================

    /** \name getting methods
     * \{
     */

    /** \brief
     * Returns \ref child[0]
     */
    virtual Element* getFirstChild() const {
      return child[0];
    };

    /** \brief
     * Returns \ref child[1]
     */
    virtual Element* getSecondChild() const {
      return child[1];
    };

    /** \brief
     * Returns \ref child[i], i=0,1
     */
    virtual Element* getChild(int i) const {
128
      FUNCNAME("Element::getChild()");
129 130 131 132 133 134 135 136
      TEST_EXIT(i==0 || i==1)("i must be 0 or 1\n");
      return child[i];
    };

    /** \brief
     * Returns true if Element is a leaf element (\ref child[0] == NULL), returns
     * false otherwise.
     */
137
    inline const bool isLeaf() const { 
138
      return (child[0] == NULL); 
139
    };
140 141 142 143

    /** \brief
     * Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
     */
144 145 146
    const DegreeOfFreedom getDOF(int i, int j) const { 
      return dof[i][j];
    };
147 148 149 150

    /** \brief
     * Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
     */
151 152 153
    const DegreeOfFreedom* getDOF(int i) const {
      return dof[i];
    };
154 155 156 157 158 159 160 161 162 163 164

    /** \brief
     * Returns a pointer to the DOFs of this Element
     */
    const DegreeOfFreedom** getDOF() const {
      return const_cast<const DegreeOfFreedom**>(dof);
    };

    /** \brief
     * Returns \ref mesh of Element
     */
165 166 167
    inline Mesh* getMesh() const { 
      return mesh; 
    };
168 169 170 171 172 173 174

    /** \brief
     * Returns \ref elementData's error estimation, if Element is a leaf element
     * and has leaf data. 
     */
    inline double getEstimation(int row) const
    {
175
      if (isLeaf()) {
176 177 178 179
	TEST_EXIT(elementData)("leaf element without leaf data\n");
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
	TEST_EXIT(ld)("leaf data not estimatable!\n");

180 181 182 183
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
184 185 186 187 188 189 190
    };

    /** \brief
     * Returns Element's coarsening error estimation, if Element is a leaf 
     * element and if it has leaf data and if this leaf data are coarsenable.
     */
    inline double getCoarseningEstimation(int row) {
191
      if (isLeaf()) {
192 193 194 195
	TEST_EXIT(elementData)("leaf element without leaf data\n");
	ElementData *ld = elementData->getElementData(COARSENABLE);
	TEST_EXIT(ld)("element data not coarsenable!\n");

196
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
197
      }
198 199
      
      return 0.0;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    };

    /** \brief
     * Returns region of element if defined, -1 else.
     */
    int getRegion() const;

    /** \brief
     * Returns local vertex number of the j-th vertex of the i-th edge
     */
    virtual int getVertexOfEdge(int i, int j) const = 0; 

    /** \brief
     * Returns local vertex number of the vertexIndex-th vertex of the
     * positionIndex-th part of type position (vertex, edge, face)
     */
    virtual int getVertexOfPosition(GeoIndex position,
				    int      positionIndex,
				    int      vertexIndex) const = 0;

220 221 222
    /** \brief
     *
     */
223 224
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

225 226 227
    /** \brief
     *
     */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    virtual int getEdgeOfFace(int face, int edge) const = 0;

    /** \brief
     * Returns the number of parts of type i in this element
     */
    virtual int getGeo(GeoIndex i) const = 0;

    /** \brief
     * Returns Element's \ref mark
     */
    inline const signed char getMark() const { 
      return mark;
    };

    /** \brief
     * Returns \ref newCoord[i]
     */
    double getNewCoord(int j) const;

    /** \brief
     * Returns Element's \ref index
     */
    inline int getIndex() const { 
      return index; 
    };

    /** \brief
     * Returns \ref newCoord
     */
    inline WorldVector<double>* getNewCoord() const { 
      return newCoord; 
    };

    /** \} */

    // ===== setting methods ======================================================

    /** \name setting methods
     * \{
     */

    /** \brief
     * Sets \ref child[0]
     */
272 273 274
    virtual void setFirstChild(Element *aChild) {
      child[0] = aChild;
    };
275 276 277 278

    /** \brief
     * Sets \ref child[1]
     */
279 280 281
    virtual void setSecondChild(Element *aChild) {
      child[1] = aChild;
    };
282 283 284 285

    /** \brief
     * Sets \ref elementData of Element
     */
286 287 288
    void setElementData(ElementData* ed) {
      elementData = ed;
    };
289 290 291 292 293

    /** \brief
     * Sets \ref newCoord of Element. Needed by refinement, if Element has a
     * boundary edge on a curved boundary.
     */
294 295 296
    inline void setNewCoord(WorldVector<double>* coord) {
      newCoord = coord;
    };
297 298 299 300

    /** \brief
     * Sets \ref mesh.
     */
301 302 303
    inline void setMesh(Mesh *m) {
      mesh = m;
    };
304 305 306 307

    /** \brief
     * Sets the pointer to the DOFs of the i-th node of Element
     */
308 309 310 311
    DegreeOfFreedom* setDOF(int i, DegreeOfFreedom* p) {
      dof[i] = p;
      return dof[i];
    };
312 313 314 315 316 317 318

    /** \brief
     * Checks whether Element is a leaf element and whether it has leaf data.
     * If the checks don't fail, leaf data's error estimation is set to est.
     */
    inline void setEstimation(double est, int row)
    {
319
      if (isLeaf()) {
320 321 322 323 324 325
	TEST_EXIT(elementData)("leaf element without leaf data\n");
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
	TEST_EXIT(ld)("leaf data not estimatable\n");

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
326
      } else {
327 328 329 330 331 332 333 334 335 336
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
    };

    /** \brief
     * Sets Element's coarsening error estimation, if Element is a leaf element
     * and if it has leaf data and if this leaf data are coarsenable.
     */
    inline void setCoarseningEstimation(double est, int row)
    {
337
      if (isLeaf()) {
338 339 340 341 342 343
	TEST_EXIT(elementData)("leaf element without leaf data\n");
	ElementData *ld = elementData->getElementData(COARSENABLE);
	TEST_EXIT(ld)("leaf data not coarsenable\n");

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
344
      } else {
345 346 347 348 349 350 351
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
    };

    /** \brief
     * Sets Elements \ref mark = mark + 1;
     */
352 353 354
    inline void incrementMark() {
      mark++;
    }
355 356 357 358

    /** \brief
     * Sets Elements \ref mark = mark - 1;
     */
359 360 361 362
    inline void decrementMark() {
      if (0 < mark) 
	mark--;
    };
363 364 365 366

    /** \brief
     * Sets Element's \ref mark
     */
367 368 369
    inline void setMark(signed char m) {
      mark = m;
    };
370 371 372 373 374 375 376 377 378 379 380 381 382 383

    /** \} */

    // ===== pure virtual methods =================================================

    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
384
      sortFaceIndices(int face, FixVec<int,WORLD> *vec) const = 0;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    /** \brief
     * Returns a copy of itself. Needed by Mesh to create Elements by a
     * prototype. 
     */ 
    virtual Element *clone() = 0;

    /** \brief
     * Returns which side of child[childnr] corresponds to side sidenr of 
     * this Element. If the child has no corresponding
     * side, the return value is negative. *isBisected is true after the
     * function call, if the side of the child is only a part of element's 
     * side, false otherwise. 
     */
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

    /** \brief
     * Returns which vertex of elements parent corresponds to the vertexnr of
     * the element, if the element is the childnr-th child of the parent.
     * If the vertex is the ner vertex at the refinement edge, -1 is returned.
     */
    virtual int getVertexOfParent(int childnr, int vertexnr, int elType = 0) const = 0;

    /** \brief
     * Returns whether Element is a Line
     */
    virtual bool isLine() const = 0;

    /** \brief
     * Returns whether Element is a Triangle
     */
    virtual bool isTriangle() const = 0;

    /** \brief
     * Returns whether Element is a Tetrahedron
     */
    virtual bool isTetrahedron() const = 0;

    /** \brief
     * Returns whether Element has sideElem as one of its sides.
     */
    virtual bool hasSide(Element *sideElem) const = 0;

    /** \} */

    // ===== other public methods =================================================

    /** \brief
     * assignment operator
     */
    Element& operator=(const Element& old);

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

    /** \brief
     * Refines Element's leaf data
     */
446 447 448 449
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) {
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
450 451 452 453 454 455 456 457 458 459 460 461 462
	  ElementData *tmp = elementData->getDecorated();
	  DELETE elementData;
	  elementData = tmp;
	}
      }
    };

    /** \brief
     * Coarsens Element's leaf data
     */
    inline void coarsenElementData(Element* child1, Element* child2, int elType=0) {
      ElementData *childData;
      childData = child1->getElementData();
463
      if (childData) {
464 465 466 467 468
	childData->coarsenElementData(this, child1, child2, elType);
	DELETE childData;
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
469
      if (childData) {
470 471 472 473 474 475 476 477 478 479 480 481 482
	childData->coarsenElementData(this, child2, child1, elType);
	DELETE childData;
	child2->setElementData(NULL);
      }
    };

    /** \brief
     * Returns pointer to \ref elementData
     */
    inline ElementData* getElementData() const {
      return elementData;
    };

483 484 485
    /** \brief
     *
     */
486
    inline ElementData* getElementData(int typeID) const {
487
      if (elementData) {
488 489 490 491 492 493 494 495 496 497
	return elementData->getElementData(typeID);
      }
      return NULL;
    };

    /** \brief
     * kills \ref elementData
     */
    bool deleteElementData(int typeID) {
      FUNCNAME("Element::deleteElementData()");
498 499
      if (elementData) {
	if (elementData->isOfType(typeID)) {
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	  ElementData *tmp = elementData;
	  elementData = elementData->getDecorated();
	  DELETE tmp;
	  return true;
	} else {
	  return elementData->deleteDecorated(typeID);
	}
      }
      return false;
    };

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
518
			 unsigned char elementTyp = 255);
519 520 521 522

    /** \brief
     * Returns whether Element's \ref newCoord is set
     */
523 524 525
    inline bool isNewCoordSet() const { 
      return (newCoord != NULL);
    };
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

    /** \brief
     * Frees memory for \ref newCoord
     */
    void eraseNewCoord();

    // ===== Serializable implementation =====
  
    void serialize(::std::ostream &out);

    void deserialize(::std::istream &in);

    // ===== protected methods ====================================================
  protected:
    /** \brief
     * Sets Element's \ref dof pointer. Used by friend class Mesh.
     */
    void setDOFPtrs();
  
    /** \brief
     * Sets Element's \ref index. Used by friend class Mesh.
     */
548 549 550
    inline void setIndex(int i) {
      index = i;
    };
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct1(const DOFAdmin*);

    /** \brief
     * Used by friend class Mesh while dofCompress
     */
    void newDOFFct2(const DOFAdmin*);

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
567
    Element *child[2];
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
     * ordered
     * the following way: The first N_VERTICES entries correspond to the DOFs at
     * the vertices of the element. The next ones are those at the edges, if 
     * present, then those at the faces, if present, and then those at the 
     * barycenter, if present.
     */
    DegreeOfFreedom  **dof;

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
586
    int index;
587 588 589 590 591 592

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
593
    signed char mark;
594 595 596 597 598 599 600 601 602 603 604 605 606 607
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
     * information
     * can be also produced by the traversal routines in the case of curved 
     * boundary.
     */
    WorldVector<double> *newCoord;

    /** \brief
     * Pointer to the Mesh this element belongs to
     */
608
    Mesh* mesh;
609 610 611 612

    /** \brief
     * Pointer to Element's leaf data
     */
613
    ElementData* elementData;
614 615 616 617 618 619 620 621 622 623



    friend class Mesh;
  };

}

#endif  // AMDIS_ELEMENT_H