Element.h 19.2 KB
Newer Older
1
2
3
4
// ============================================================================
// ==                                                                        ==
// == AMDiS - Adaptive multidimensional simulations                          ==
// ==                                                                        ==
5
// ==  http://www.amdis-fem.org                                              ==
6
7
// ==                                                                        ==
// ============================================================================
8
9
10
11
12
13
14
15
16
17
18
19
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


20
21
22
23
24
25

/** \file Element.h */

#ifndef AMDIS_ELEMENT_H
#define AMDIS_ELEMENT_H

26
#include "AMDiS_fwd.h"
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include "Global.h"
#include "RefinementManager.h"
#include "Serializable.h"
#include "ElementData.h"
#include "LeafData.h"

namespace AMDiS {

  template<typename T, GeoIndex d> class FixVec;

#define AMDIS_UNDEFINED  5

  /** \ingroup Triangulation 
   * \brief
   * Base class for Line, Triangle, Tetrahedron
   *
   * Elements in AMDiS are always simplices (a simplex is a Line in 1d, a 
   * Triangle in 2d and a Tetrahedron in 3d). 
   * We restrict ourselves here to simplicial meshes, for several reasons:
   * -# A simplex is one of the most simple geometric types and complex domains 
   *    may be approximated by a set of simplices quite easily.
   * -# Simplicial meshes allow local refinement without the need of 
   *    nonconforming meshes (hanging nodes), parametric elements, or mixture of
   *    element types (which is the case for quadrilateral meshes).
   * -# Polynomials of any degree are easily represented on a simplex using 
   *    local (barycentric) coordinates.
   *
   * A Line element and its refinement:
   *
   * <img src="line.png">
   *
   * A Triangle element and its refinement:
   *
   * <img src="triangle.png">
   *
   * A Tetrahedron element and its refinements:
   *
   * <img src="tetrahedron.png">
   */
  class Element : public Serializable
  {
  private:
69
    /// private standard constructor because an Element must know his Mesh
70
    Element() {}
71

72
  public:
73
    /// constructs an Element which belongs to Mesh
74
75
    Element(Mesh *);

76
    /// copy constructor
77
78
    Element(const Element& old);

79
    /// destructor
80
81
    virtual ~Element();

82
    ///
83
84
    void deleteElementDOFs();

85
86
    /// Clone this Element and return a reference to it. Because also the DOFs
    /// are cloned, \ref Mesh::serializedDOfs must be used.
87
88
    Element* cloneWithDOFs();

89
90
91
92
    /** \name getting methods
     * \{
     */

93
    /// Returns \ref child[0]
Thomas Witkowski's avatar
Thomas Witkowski committed
94
95
    inline Element* getFirstChild() const 
    {
96
      return child[0];
97
    }
98

99
    /// Returns \ref child[1]
Thomas Witkowski's avatar
Thomas Witkowski committed
100
101
    inline Element* getSecondChild() const 
    {
102
      return child[1];
103
    }
104

105
    /// Returns \ref child[i], i=0,1
Thomas Witkowski's avatar
Thomas Witkowski committed
106
107
    inline Element* getChild(int i) const 
    {
Thomas Witkowski's avatar
Thomas Witkowski committed
108
      TEST_EXIT_DBG(i == 0 || i == 1)("There is only child 0 or 1! (i = %d)\n", i);
109
      return child[i];
110
    }
111

112
113
    /// Returns true if Element is a leaf element (\ref child[0] == NULL), returns
    /// false otherwise.
Thomas Witkowski's avatar
Thomas Witkowski committed
114
115
    inline const bool isLeaf() const 
    { 
116
      return (child[0] == NULL); 
117
    }
118

119
    /// Returns \ref dof[i][j] which is the j-th DOF of the i-th node of Element.
120
    inline DegreeOfFreedom getDof(int i, int j) const 
Thomas Witkowski's avatar
Thomas Witkowski committed
121
    { 
122
      TEST_EXIT_DBG(dofValid)("DOFs are not valid in element %d!\n", index);
123

124
      return dof[i][j];
125
    }
126

127
    /// Returns \ref dof[i] which is a pointer to the DOFs of the i-th node.
128
    inline const DegreeOfFreedom* getDof(int i) const 
Thomas Witkowski's avatar
Thomas Witkowski committed
129
    {
130
      TEST_EXIT_DBG(dofValid)("DOFs are not valid in element %d!\n", index);
131

132
      return dof[i];
133
    }
134

135
    /// Returns a pointer to the DOFs of this Element
136
    inline const DegreeOfFreedom** getDof() const 
Thomas Witkowski's avatar
Thomas Witkowski committed
137
    {
138
      TEST_EXIT_DBG(dofValid)("DOFs are not valid in element %d!\n", index);
139

140
      return const_cast<const DegreeOfFreedom**>(dof);
141
    }
142

143
    /// Returns \ref mesh of Element
Thomas Witkowski's avatar
Thomas Witkowski committed
144
145
    inline Mesh* getMesh() const 
    { 
146
      return mesh; 
147
    }
148

149
150
151
152
153
    inline void setDofValid(bool b)
    {
      dofValid = b;
    }

154
155
    /// Returns \ref elementData's error estimation, if Element is a leaf element
    /// and has leaf data. 
156
157
    inline double getEstimation(int row) const
    {
158
      if (isLeaf()) {
159
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
160
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
161
	TEST_EXIT_DBG(ld)("leaf data not estimatable!\n");
162

163
164
165
166
	return dynamic_cast<LeafDataEstimatableInterface*>(ld)->getErrorEstimate(row);
      }	
      
      return 0.0;
167
    }
168

169
170
    /// Returns Element's coarsening error estimation, if Element is a leaf 
    /// element and if it has leaf data and if this leaf data are coarsenable.
Thomas Witkowski's avatar
Thomas Witkowski committed
171
172
    inline double getCoarseningEstimation(int row) 
    {
173
      if (isLeaf()) {
174
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
175
	ElementData *ld = elementData->getElementData(COARSENABLE);
176
	TEST_EXIT_DBG(ld)("element data not coarsenable!\n");
177

178
	return dynamic_cast<LeafDataCoarsenableInterface*>(ld)->getCoarseningErrorEstimate(row);
179
      }
180
181
      
      return 0.0;
182
    }
183

184
    /// Returns region of element if defined, -1 else.
185
186
    int getRegion() const;

187
    /// Returns local vertex number of the j-th vertex of the i-th edge
188
189
    virtual int getVertexOfEdge(int i, int j) const = 0; 

190
191
    /// Returns local vertex number of the vertexIndex-th vertex of the
    /// positionIndex-th part of type position (vertex, edge, face)
192
    virtual int getVertexOfPosition(GeoIndex position,
193
194
				    int positionIndex,
				    int vertexIndex) const = 0;
195

196
    ///
197
198
    virtual int getPositionOfVertex(int side, int vertex) const = 0;

199
    ///
200
201
    virtual int getEdgeOfFace(int face, int edge) const = 0;

202
    ///
203
204
205
206
    virtual DofEdge getEdge(int localEdgeIndex) const = 0;

    ///
    virtual DofFace getFace(int localFaceIndex) const = 0;
207

208
    /// Returns the number of parts of type i in this element
209
210
    virtual int getGeo(GeoIndex i) const = 0;

211
    /// Returns Element's \ref mark
212
    inline const int getMark() const 
Thomas Witkowski's avatar
Thomas Witkowski committed
213
    { 
214
      return mark;
215
    }
216

217
    /// Returns \ref newCoord[i]
Thomas Witkowski's avatar
Thomas Witkowski committed
218
219
    inline double getNewCoord(int i) const 
    {
220
221
222
	TEST_EXIT_DBG(newCoord)("newCoord = NULL\n");
	return (*newCoord)[i];
    }
223

224
    /// Returns Element's \ref index
Thomas Witkowski's avatar
Thomas Witkowski committed
225
226
    inline int getIndex() const 
    { 
227
      return index; 
228
    }
229

230
    /// Returns \ref newCoord
Thomas Witkowski's avatar
Thomas Witkowski committed
231
232
    inline WorldVector<double>* getNewCoord() const 
    { 
233
      return newCoord; 
234
    }
235
236
237
238
239
240
241

    /** \} */

    /** \name setting methods
     * \{
     */

242
    /// Sets \ref child[0]
Thomas Witkowski's avatar
Thomas Witkowski committed
243
244
    virtual void setFirstChild(Element *aChild) 
    {
245
      child[0] = aChild;
246
    }
247

248
    /// Sets \ref child[1]
Thomas Witkowski's avatar
Thomas Witkowski committed
249
250
    virtual void setSecondChild(Element *aChild) 
    {
251
      child[1] = aChild;
252
    }
253

254
    /// Sets \ref elementData of Element
Thomas Witkowski's avatar
Thomas Witkowski committed
255
256
    void setElementData(ElementData* ed) 
    {
257
      elementData = ed;
258
    }
259

260
261
    /// Sets \ref newCoord of Element. Needed by refinement, if Element has a
    /// boundary edge on a curved boundary.
Thomas Witkowski's avatar
Thomas Witkowski committed
262
263
    inline void setNewCoord(WorldVector<double>* coord) 
    {
264
      newCoord = coord;
265
    }
266

267
    /// Sets \ref mesh.
Thomas Witkowski's avatar
Thomas Witkowski committed
268
269
    inline void setMesh(Mesh *m) 
    {
270
      mesh = m;
271
    }
272

273
    /// Sets the pointer to the DOFs of the i-th node of Element
274
    inline void setDof(int pos, DegreeOfFreedom* p) 
Thomas Witkowski's avatar
Thomas Witkowski committed
275
    {
276
      dof[pos] = p;
277
    }
278

279
280
    /// Checks whether Element is a leaf element and whether it has leaf data.
    /// If the checks don't fail, leaf data's error estimation is set to est.
281
282
    inline void setEstimation(double est, int row)
    {
283
284
      FUNCNAME("Element::setEstimation()");

285
      if (isLeaf()) {
286
	TEST_EXIT_DBG(elementData)("Leaf element %d without leaf data!\n", index);
287
	ElementData *ld = elementData->getElementData(ESTIMATABLE);
288
	TEST_EXIT_DBG(ld)("Leaf data %d not estimatable!\n", index);
289
290
291

	dynamic_cast<LeafDataEstimatableInterface*>(ld)->
	  setErrorEstimate(row, est);
292
      } else {
293
294
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
295
    }
296

297
298
    /// Sets Element's coarsening error estimation, if Element is a leaf element
    /// and if it has leaf data and if this leaf data are coarsenable.
299
300
    inline void setCoarseningEstimation(double est, int row)
    {
301
      if (isLeaf()) {
302
	TEST_EXIT_DBG(elementData)("leaf element without leaf data\n");
303
	ElementData *ld = elementData->getElementData(COARSENABLE);
304
	TEST_EXIT_DBG(ld)("leaf data not coarsenable\n");
305
306
307

	dynamic_cast<LeafDataCoarsenableInterface*>(ld)->
	  setCoarseningErrorEstimate(row, est);
308
      } else {
309
310
	ERROR_EXIT("setEstimation only for leaf elements!\n");
      }
311
    }
312

313
    /// Sets Elements \ref mark = mark + 1;
Thomas Witkowski's avatar
Thomas Witkowski committed
314
315
    inline void incrementMark() 
    {
316
317
      mark++;
    }
318

319
    /// Sets Elements \ref mark = mark - 1;
Thomas Witkowski's avatar
Thomas Witkowski committed
320
321
    inline void decrementMark() 
    {
322
323
      if (0 < mark) 
	mark--;
324
    }
325

326
    /// Sets Element's \ref mark
327
    inline void setMark(int m) 
Thomas Witkowski's avatar
Thomas Witkowski committed
328
    {
329
      mark = m;
330
    }
331
332
333
334
335
336
337
338
339
340
341
342
343

    /** \} */


    /** \name pure virtual methods 
     * \{ 
     */

    /** \brief
     * orient the vertices of edges/faces.
     * Used by Estimator for the jumps => same quadrature nodes from both sides!
     */
    virtual const FixVec<int,WORLD>& 
344
      sortFaceIndices(int face, FixVec<int, WORLD> *vec) const = 0;
345

346
347
    /// Returns a copy of itself. Needed by Mesh to create Elements by 
    /// a prototype. 
348
349
    virtual Element *clone() = 0;

350
351
352
    /// Returns which side of child[childnr] corresponds to side sidenr of 
    /// this Element. If the child has no corresponding side, the return value 
    /// is negative.
353
354
    virtual int getSideOfChild(int childnr, int sidenr, int elType = 0) const = 0;

355
    /** \brief
356
357
358
     * Generalization of \ref getSideOfChild to arbitrary subObject. Thus, 
     * e.g., in 3d we can ask for the local id of a verte, edge or face 
     * on the elements children.
359
360
361
362
363
364
365
366
367
     *
     * \param[in]  childnr    Either 0 or 1 for the left or right children.
     * \param[in]  subObj     Defines whether we ask for VERTEX, EDGE or FACE.
     * \param[in]  ithObj     Number of the object on the parent.
     * \param[in]  elType     Type of the element. Important only in 3D.
     */
    virtual int getSubObjOfChild(int childnr, GeoIndex subObj, int ithObj, 
				 int elType = 0) const = 0;

368
369
370
371
372
373
    /// Returns which vertex of elements parent corresponds to the vertexnr of
    /// the element, if the element is the childnr-th child of the parent.
    /// If the vertex is the ner vertex at the refinement edge, -1 is returned.
    virtual int getVertexOfParent(int childnr, 
				  int vertexnr, 
				  int elType = 0) const = 0;
374

375
    /// Returns whether Element is a Line
376
377
    virtual bool isLine() const = 0;

378
    /// Returns whether Element is a Triangle
379
380
    virtual bool isTriangle() const = 0;

381
    /// Returns whether Element is a Tetrahedron
382
383
    virtual bool isTetrahedron() const = 0;

384
    /// Returns whether Element has sideElem as one of its sides.
385
386
    virtual bool hasSide(Element *sideElem) const = 0;

387
388
389
390
391
392
393
    /** \brief
     * Returns for a given element type number the element type number of the children.
     * For 1d and 2d this is always 0, because element type number are used in the 
     * 3d case only.
     */
    virtual int getChildType(int elType) const = 0;

394
    /** \brief
395
396
397
398
     * Traverses a vertex/edge/face of a given element (this includes also all
     * children of the element having the same edge/face). All DOFs on mesh
     * nodes alonge this vertex/edge/face are assembled and put together to 
     * a list.
399
     *
400
401
402
403
404
405
406
407
     * \param[in]  feSpace     FE space which is used to get the dofs.
     * \param[in]  bound       Defines the vertex/edge/face of the element on
     *                         which all vertex dofs are assembled.
     * \param[out] dofs        List of dofs, where the result is stored.
     * \param[in]  baseDofPtr  If true, the base DOF pointes are stored. Thus,
     *                         dof* [\ref dof] of the element is inserted. If 
     *                         false, &(dof[.][n0]) is put to the result vector, 
     *                         with n0 beging the number of predofs.
408
     */
409
    virtual void getNodeDofs(const FiniteElemSpace* feSpace, 
410
			     BoundaryObject bound,
411
412
			     DofContainer& dofs,
			     bool baseDofPtr = false) const = 0;
413
414

    /** \brief
415
416
417
418
     * Traverses a vertex/edge/face of a given element (this includes also all
     * children of the element having the same edge/face). All DOFs belonging
     * to higher order basis functions alonge this vertex/edge/face are 
     * assembled and put together to a list.
419
     *
420
421
422
423
424
425
426
427
     * \param[in]  feSpace     FE space which is used to get the dofs.
     * \param[in]  bound       Defines the edge/face of the element on which
     *                         all non vertex dofs are assembled.
     * \param[out] dofs        All dofs are put to this dof list.
     * \param[in]  baseDofPtr  If true, the base DOF pointes are stored. Thus,
     *                         dof* [\ref dof] of the element is inserted. If 
     *                         false, &(dof[.][n0]) is put to the result vector, 
     *                         with n0 beging the number of predofs.
428
     */
429
    virtual void getHigherOrderDofs(const FiniteElemSpace* feSpace, 
430
				    BoundaryObject bound,
431
432
				    DofContainer& dofs,
				    bool baseDofPtr = false) const = 0;
433

434
435
    /// Combines \ref getNodeDofs and \ref getHigherOrderDofs to one function. 
    /// See parameter description there.
436
    void getAllDofs(const FiniteElemSpace* feSpace, 
437
		    BoundaryObject bound, 
438
439
		    DofContainer& dofs,
		    bool baseDofPtr = false);
440
441


442
443
444
445
    /** \} */

    // ===== other public methods =================================================

446
    /// assignment operator
447
    Element& operator=(const Element& el);
448
449
450
451
452
453
454

    /** \brief
     * Checks whether the face with vertices dof[0],..,dof[DIM-1] is
     * part of mel's boundary. returns the opposite vertex if true, -1 else
     */
    int oppVertex(FixVec<DegreeOfFreedom*, DIMEN> pdof) const;

455
    /// Refines Element's leaf data
Thomas Witkowski's avatar
Thomas Witkowski committed
456
457
    inline void refineElementData(Element* child1, Element* child2, int elType = 0) 
    {
458
459
460
      if (elementData) {
	bool remove = elementData->refineElementData(this, child1, child2, elType);
	if (remove) {
461
	  ElementData *tmp = elementData->getDecorated();
Thomas Witkowski's avatar
Thomas Witkowski committed
462
	  delete elementData;
463
464
465
	  elementData = tmp;
	}
      }
466
    }
467

468
    /// Coarsens Element's leaf data
Thomas Witkowski's avatar
Thomas Witkowski committed
469
470
    inline void coarsenElementData(Element* child1, Element* child2, int elType = 0) 
    {
471
472
      ElementData *childData;
      childData = child1->getElementData();
473
      if (childData) {
474
	childData->coarsenElementData(this, child1, child2, elType);
Thomas Witkowski's avatar
Thomas Witkowski committed
475
	delete childData;
476
477
478
	child1->setElementData(NULL);
      }
      childData = child2->getElementData();
479
      if (childData) {
480
	childData->coarsenElementData(this, child2, child1, elType);
Thomas Witkowski's avatar
Thomas Witkowski committed
481
	delete childData;
482
483
	child2->setElementData(NULL);
      }
484
    }
485

486
    /// Returns pointer to \ref elementData
Thomas Witkowski's avatar
Thomas Witkowski committed
487
488
    inline ElementData* getElementData() const 
    {
489
      return elementData;
490
    }
491

492
    ///
Thomas Witkowski's avatar
Thomas Witkowski committed
493
494
495
    inline ElementData* getElementData(int typeID) const 
    {
      if (elementData)
496
	return elementData->getElementData(typeID);
Thomas Witkowski's avatar
Thomas Witkowski committed
497

498
      return NULL;
499
    }
500

501
    /// Deletes the \ref elementData with a specific typeID.
502
    bool deleteElementData(int typeID);
503
504
505
506
507
508
509
510

    /** \brief
     * Returns whether element is refined at side side
     * el1, el2 are the corresponding children. 
     * (not neccessarly the direct children!)
     * elementTyp is the type of this element (comes from ElInfo)
     */
    bool isRefinedAtSide(int side, Element *el1, Element *el2, 
511
			 unsigned char elementTyp = 255);
512

513
    /// Returns whether Element's \ref newCoord is set
Thomas Witkowski's avatar
Thomas Witkowski committed
514
515
    inline bool isNewCoordSet() const 
    { 
516
      return (newCoord != NULL);
517
    }
518

519
    /// Frees memory for \ref newCoord
520
    void eraseNewCoord();
521
522
 
    /// Serialize the element to a file.
523
    void serialize(std::ostream &out);
524

525
    /// Deserialize an element from a file.
526
    void deserialize(std::istream &in);
527

528
529
530
    /// Sets Element's \ref dof pointer.
    void createNewDofPtrs();
 
531
  protected:
532
    /// Sets Element's \ref index. Used by friend class Mesh.
Thomas Witkowski's avatar
Thomas Witkowski committed
533
534
    inline void setIndex(int i) 
    {
535
      index = i;
536
    }
537

538
    /// Used by friend class Mesh while dofCompress
539
    void newDofFct1(const DOFAdmin*, std::vector<int>&);
540

541
    /// Used by friend class Mesh while dofCompress
542
543
544
    void newDofFct2(const DOFAdmin*);

    /// Changes old dofs to negative new dofs
545
546
    void changeDofs1(const DOFAdmin* admin, std::vector<int>& newDofIndex,
		     int n0, int nd0, int nd, int pos);
547
548
549

    /// Changes negative new dofs to positive
    void changeDofs2(int n0, int nd0, int nd, int pos);
550
551
552
553
554
555

  protected:
    /** \brief
     * Pointers to the two children of interior elements of the tree. Pointers
     * to NULL for leaf elements.
     */
556
    Element *child[2];
557
558
559
560
561

    /** \brief
     * Vector of pointers to DOFs. These pointers must be available for elements
     * vertices (for the geometric description of the mesh). There my be pointers
     * for the edges, for faces and for the center of an element. They are 
562
563
564
     * ordered the following way: The first N_VERTICES entries correspond to the
     * DOFs at the vertices of the element. The next ones are those at the edges,
     * if present, then those at the faces, if present, and then those at the 
565
566
     * barycenter, if present.
     */
567
    DegreeOfFreedom **dof;
568
569
570
571
572
573

    /** \brief
     * Unique global index of the element. these indices are not strictly ordered
     * and may be larger than the number of elements in the binary tree (the list
     * of indices may have holes after coarsening).
     */
574
    int index;
575
576
577
578
579
580

    /** \brief
     * Marker for refinement and coarsening. if mark is positive for a leaf
     * element, this element is refined mark times. if mark is negative for
     * a leaf element, this element is coarsened -mark times.
     */
581
    int mark;
582
583
584
585
586
 
    /** \brief
     * If the element has a boundary edge on a curved boundary, this is a pointer
     * to the coordinates of the new vertex that is created due to the refinement
     * of the element, otherwise it is a NULL pointer. Thus coordinate 
587
588
     * information can be also produced by the traversal routines in the case of 
     * curved boundary.
589
590
591
     */
    WorldVector<double> *newCoord;

592
    /// Pointer to the Mesh this element belongs to
593
    Mesh* mesh;
594

595
    /// Pointer to Element's leaf data
596
    ElementData* elementData;
597

598
599
600
601
602
603
604
605
    /** \brief
     * Is true, if the DOF pointers are valid. In sequential computations this
     * is always the case. In parallel computations all macro elements are stored
     * in memory though not all of them are part of the mesh (because they are owned
     * by another rank). In this case, there are no valid DOFs on the element. 
     */
    bool dofValid;

606
607
608
609
610
611
    /** \brief
     * This map is used for deletion of all DOFs of all elements of a mesh. Once
     * a DOF-vector (all DOFS at a node, edge, etc.) is deleted, its address is
     * added to this map to note not to delete it a second time.
     */
    static std::map<DegreeOfFreedom*, bool> deletedDOFs;
612
613
614

    friend class Mesh;
  };
615
616
617
618
619


  /// Writes the element hierarchie to a Graphviz dot-file. Using the dot-tool from
  /// Graphvis, this dot-file can be converted to a ps-file. Useful for debugging!
  void writeDotFile(Element *el, std::string filename, int maxLevels = -1);
620
621
}

622
623
#include "Element.hh"

624
625
#endif  // AMDIS_ELEMENT_H