PetscSolverNavierStokes2.cc 12.5 KB
Newer Older
Praetorius, Simon's avatar
Praetorius, Simon committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/******************************************************************************
 *
 * AMDiS - Adaptive multidimensional simulations
 *
 * Copyright (C) 2013 Dresden University of Technology. All Rights Reserved.
 * Web: https://fusionforge.zih.tu-dresden.de/projects/amdis
 *
 * Authors: 
 * Simon Vey, Thomas Witkowski, Andreas Naumann, Simon Praetorius, et al.
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 *
 * This file is part of AMDiS
 *
 * See also license.opensource.txt in the distribution.
 * 
 ******************************************************************************/



#include "preconditioner/PetscSolverNavierStokes2.h"
#include "parallel/PetscHelper.h"
#include "TransformDOF.h"
#include "DirichletBC.h"
#include "Functors.h"

namespace AMDiS { namespace Parallel {

  using namespace std;


  PetscErrorCode pcSchurShell2(PC pc, Vec x, Vec y)
  {
    void *ctx;
    PCShellGetContext(pc, &ctx);
    NavierStokesSchurData2* data = static_cast<NavierStokesSchurData2*>(ctx);

    // Project out constant null space
    {
      int vecSize;
      VecGetSize(x, &vecSize);
      PetscScalar vecSum;
      VecSum(x, &vecSum);
      vecSum = vecSum / static_cast<PetscScalar>(-1.0 * vecSize);
      VecShift(x, vecSum); 
    }

    KSPSolve(data->kspLaplace, x, y);
    MatMult(data->matConDif, y, x);
    KSPSolve(data->kspMass, x, y);
    
    PetscFunctionReturn(0);
  }
  

  PetscSolverNavierStokes2::PetscSolverNavierStokes2(string name)
    : PetscSolverGlobalMatrix(name, false),
      pressureComponent(-1),
      pressureNullSpace(true),
      useOldInitialGuess(false),
      velocitySolutionMode(0),
      massSolutionMode(0),
      laplaceSolutionMode(0),
      massMatrixSolver(NULL),
      laplaceMatrixSolver(NULL),
      nu(NULL),
      invTau(NULL),
      solution(NULL),
      phase(NULL)
  {
    Parameters::get(name + "->navierstokes->pressure component", 
		    pressureComponent);
    TEST_EXIT(pressureComponent >= 0)
      ("For using PETSc stokes solver you must define a pressure component!\n");

    Parameters::get(name + "->navierstokes->pressure null space",
		    pressureNullSpace);
    TEST_EXIT(pressureNullSpace)("This is not yet tested, may be wrong!\n");

    Parameters::get(name + "->navierstokes->use old initial guess", 
		    useOldInitialGuess);

    Parameters::get(name + "->navierstokes->velocity solver", 
		    velocitySolutionMode);

    Parameters::get(name + "->navierstokes->mass solver", 
		    massSolutionMode);

    Parameters::get(name + "->navierstokes->laplace solver", 
		    laplaceSolutionMode);
    
    
    Parameters::get(name + "->navierstokes->neumann boundary indices", 
		    neumannBC);
  }
  
   int PetscSolverNavierStokes2::solveLinearSystem(const SolverMatrix<Matrix<DOFMatrix*> >& A,
				    SystemVector& x,
				    SystemVector& b,
				    bool createMatrixData,
				    bool storeMatrixData)
  {
    FUNCNAME("PetscSolverNavierStokes2::solveLinearSystem()");
    
    TEST_EXIT(meshDistributor)("No meshDistributor provided. Should not happen!\n");

    MPI::COMM_WORLD.Barrier();
    Timer t;

    systemMat = A.getOriginalMat();
    if (createMatrixData)
      fillPetscMatrix(const_cast< Matrix< DOFMatrix* >* >(systemMat));

    fillPetscRhs(&b);

    INFO(info, 8)("creation of parallel data structures needed %.5f seconds\n", 
		  t.elapsed());

    solvePetscMatrix(x, NULL);

    if (!storeMatrixData) {
      destroyVectorData();
      destroyMatrixData();
    }
  
    return 0;
  }


  void PetscSolverNavierStokes2::initSolver(KSP &ksp)
  {
    // Create FGMRES based outer solver
    KSPCreate(domainComm, &ksp);
136
137
138
#if (PETSC_VERSION_MINOR >= 5)
    KSPSetOperators(ksp, getMatInterior(), getMatInterior());
#else
Praetorius, Simon's avatar
Praetorius, Simon committed
139
    KSPSetOperators(ksp, getMatInterior(), getMatInterior(), SAME_NONZERO_PATTERN);
140
#endif
Praetorius, Simon's avatar
Praetorius, Simon committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    if (getInfo() >= 10)
      KSPMonitorSet(ksp, KSPMonitorDefault, PETSC_NULL, PETSC_NULL);
    else if (getInfo() >= 20)
      KSPMonitorSet(ksp, KSPMonitorTrueResidualNorm, PETSC_NULL, PETSC_NULL);
    petsc_helper::setSolver(ksp, "ns_", KSPFGMRES, PCNONE, getRelative(), getTolerance(), getMaxIterations());
    
    // Create null space information.
    if (pressureNullSpace)
      setConstantNullSpace(ksp, pressureComponent, true);
    
    if (useOldInitialGuess)
      KSPSetInitialGuessNonzero(ksp, PETSC_TRUE);
  }
  
  void PetscSolverNavierStokes2::addDirichletBC(DOFMatrix& m, BoundaryType b)
  {
    DirichletBC *dirichletApply = 
      new DirichletBC(b, new AMDiS::Const<double, WorldVector<double> >(0.0), m.getRowFeSpace(), m.getColFeSpace(), true);

    m.getBoundaryManager()->addBoundaryCondition(dirichletApply);
  }


  void PetscSolverNavierStokes2::initPreconditioner(PC pc)
  {
    FUNCNAME("PetscSolverNavierStokes2::initPreconditioner()");

    Timer t;

    TEST_EXIT(nu)("nu pointer not set!\n");
    TEST_EXIT(invTau)("invtau pointer not set!\n");
    TEST_EXIT(solution)("solution pointer not set!\n");

    int dow = Global::getGeo(WORLD);

    vector<int> velocityComponents;
    for (size_t i = 0; i < static_cast<size_t>(dow); i++)
      velocityComponents.push_back(i);

    PCSetType(pc, PCFIELDSPLIT);
    PCFieldSplitSetType(pc, PC_COMPOSITE_SCHUR);
    PCFieldSplitSetSchurFactType(pc, PC_FIELDSPLIT_SCHUR_FACT_FULL);

    createFieldSplit(pc, "velocity", velocityComponents);
    createFieldSplit(pc, "pressure", pressureComponent);
    PCSetFromOptions(pc);

    KSPSetUp(kspInterior);

    KSP *subKsp;
    int nSubKsp;
    PCFieldSplitGetSubKSP(pc, &nSubKsp, &subKsp);


    TEST_EXIT(nSubKsp == 2)
      ("Wrong numer of KSPs inside of the fieldsplit preconditioner!\n");

    KSP kspVelocity = subKsp[0];
    KSP kspSchur = subKsp[1];
    PetscFree(subKsp);

    switch (velocitySolutionMode) {
    case 0:      
      petsc_helper::setSolver(kspVelocity, "", 
 			      KSPRICHARDSON, PCHYPRE, 0.0, 1e-14, 1);
      break;
    case 1:
      petsc_helper::setSolverWithLu(kspVelocity, "", KSPPREONLY, 
				    PCLU, MATSOLVERMUMPS , 0.0, 1e-14, 1);
      break;
    default:
      ERROR_EXIT("No velocity solution mode %d available!\n", velocitySolutionMode);
    }
    

    KSPSetType(kspSchur, KSPPREONLY);
    PC pcSub;
    KSPGetPC(kspSchur, &pcSub);
    PCSetType(pcSub, PCSHELL);
    PCShellSetApply(pcSub, pcSchurShell2);
    PCShellSetContext(pcSub, &matShellContext);

    if (pressureNullSpace)
      setConstantNullSpace(kspSchur);
    

    // === Mass matrix solver ===

    const FiniteElemSpace *pressureFeSpace = componentSpaces[pressureComponent];
    DOFMatrix massMatrix(pressureFeSpace, pressureFeSpace);
    {
      Operator massOp(pressureFeSpace, pressureFeSpace);
      ZeroOrderTerm *massTerm = NULL;
      if ((!phase) || (*nu == 0.0))
	massTerm = new Simple_ZOT;
      else
        massTerm = new VecAtQP_ZOT(phase);
      massOp.addTerm(massTerm);
      massMatrix.assembleOperator(massOp);
      delete massTerm;
    }
    massMatrixSolver = createSubSolver(pressureComponent, "mass_");
    massMatrixSolver->fillPetscMatrix(&massMatrix);

    
    if (neumannBC.size() > 0) {
      MSG("Number of neumann boundary indices: %d\n", neumannBC.size());
    }
    

    // === Laplace matrix solver ===

    DOFMatrix laplaceMatrix(pressureFeSpace, pressureFeSpace);
    {
      Operator laplaceOp(pressureFeSpace, pressureFeSpace);
      SecondOrderTerm *laplaceTerm = NULL;      
      if ((!phase) || (*nu == 0.0))
	laplaceTerm = new Simple_SOT;
      else
	laplaceTerm = new VecAtQP_SOT(phase);
      laplaceOp.addTerm(laplaceTerm);
      for (size_t i = 0; i < neumannBC.size(); i++)
	addDirichletBC(laplaceMatrix, neumannBC[i]);
      
      laplaceMatrix.assembleOperator(laplaceOp);
      delete laplaceTerm;
    }
    laplaceMatrixSolver = createSubSolver(pressureComponent, string("laplace_"));
    laplaceMatrixSolver->fillPetscMatrix(&laplaceMatrix);


    // === Create convection-diffusion operator ===

    DOFVector<double> vx(pressureFeSpace, "vx");
    DOFVector<double> vy(pressureFeSpace, "vy");
    DOFVector<double> vz(pressureFeSpace, "vz");
    DOFVector<double> vp(pressureFeSpace, "vp");
    vx.interpol(solution->getDOFVector(0));
    if (dow >= 2)
      vy.interpol(solution->getDOFVector(1));
    if (dow >= 3)
      vz.interpol(solution->getDOFVector(2));

    DOFMatrix conDifMatrix(pressureFeSpace, pressureFeSpace);

    {
      Operator conDifOp(pressureFeSpace, pressureFeSpace);
      
      ZeroOrderTerm *conDif0 = NULL;
      SecondOrderTerm *conDif1 = NULL;
      FirstOrderTerm *conDif2 = NULL, *conDif3 = NULL, *conDif4 = NULL;

      if (!phase) {
	MSG("INIT WITHOUT PHASE!\n");
	
	conDif0 = new Simple_ZOT(*invTau);
	conDifOp.addTerm(conDif0);
	conDif1 = new Simple_SOT(*nu);
	conDifOp.addTerm(conDif1);
	conDif2 = new VecAtQP_FOT(&vx, NULL, 0);
	conDifOp.addTerm(conDif2, GRD_PHI);
	if (dow >= 2) {
	  conDif3 = new VecAtQP_FOT(&vy, NULL, 1);
	  conDifOp.addTerm(conDif3, GRD_PHI);
	}
	if (dow == 3) {
	  conDif4 = new VecAtQP_FOT(&vz, NULL, 2);	
	  conDifOp.addTerm(conDif4, GRD_PHI);
	}
      } else { // no phase given
	
	vp.interpol(phase);
	
	if (*nu > 0.0) {
	  conDif0 = new VecAtQP_ZOT(&vp, NULL, *invTau);
	  conDifOp.addTerm(conDif0);	
	  conDif1 = new VecAtQP_SOT(&vp, NULL, *nu);
	  conDifOp.addTerm(conDif1);	
	  conDif2 = new Vec2AtQP_FOT(&vx, &vp, NULL, 0);
	  conDifOp.addTerm(conDif2, GRD_PHI);
	  
	  if (dow >= 2) {
	    conDif3 = new Vec2AtQP_FOT(&vy, &vp, NULL, 1);
	    conDifOp.addTerm(conDif3, GRD_PHI);
	  }
	  if (dow == 3) {
	    conDif4 = new Vec2AtQP_FOT(&vz, &vp, NULL, 2);
	    conDifOp.addTerm(conDif4, GRD_PHI);
	  }
	} else {	  
	  conDif0 = new VecAtQP_ZOT(&vp, new LinearInterpolation(*rho1,*rho2,*invTau));
	  conDifOp.addTerm(conDif0);	
	  conDif1 = new VecAtQP_SOT(&vp, new LinearInterpolation(*nu1,*nu2));
	  conDifOp.addTerm(conDif1);	
	  conDif2 = new Vec2AtQP_FOT(&vx, &vp, new LinearInterpolation2(*rho1,*rho2), 0);
	  conDifOp.addTerm(conDif2, GRD_PHI);
	  
	  if (dow >= 2) {
	    conDif3 = new Vec2AtQP_FOT(&vy, &vp, new LinearInterpolation2(*rho1,*rho2), 1);
	    conDifOp.addTerm(conDif3, GRD_PHI);
	  }
	  if (dow == 3) {
	    conDif4 = new Vec2AtQP_FOT(&vz, &vp, new LinearInterpolation2(*rho1,*rho2), 2);
	    conDifOp.addTerm(conDif4, GRD_PHI);
	  }
	}
      }/**/

      for (size_t i = 0; i < neumannBC.size(); i++)
	addDirichletBC(conDifMatrix, neumannBC[i]);
      conDifMatrix.assembleOperator(conDifOp);

      delete conDif0;
      delete conDif1;
      delete conDif2;
      if (dow >= 2)
	delete conDif3;
      if (dow == 3)
	delete conDif4;
    }
    

    conDifMatrixSolver = createSubSolver(pressureComponent, "condif_");
    conDifMatrixSolver->fillPetscMatrix(&conDifMatrix);


    // === Setup solver ===

    matShellContext.kspMass = massMatrixSolver->getSolver();
    matShellContext.kspLaplace = laplaceMatrixSolver->getSolver();
    matShellContext.matConDif = conDifMatrixSolver->getMatInterior();    

    switch (massSolutionMode) {
    case 0:
      petsc_helper::setSolver(matShellContext.kspMass, "mass_", 
			      KSPCG, PCJACOBI, 0.0, 1e-14, 2);
      break;
    case 1:
      petsc_helper::setSolverWithLu(matShellContext.kspMass, "mass_", KSPRICHARDSON, 
				    PCLU, MATSOLVERMUMPS, 0.0, 1e-14, 1);
      break;
    default:
      ERROR_EXIT("No mass solution mode %d available!\n", massSolutionMode);
    }

    switch (laplaceSolutionMode) {
    case 0:
      petsc_helper::setSolver(matShellContext.kspLaplace, "laplace_", 
 			      KSPRICHARDSON, PCHYPRE, 0.0, 1e-14, 1);
      break;
    case 1:
      petsc_helper::setSolverWithLu(matShellContext.kspLaplace, "laplace_", 
				    KSPRICHARDSON, PCLU, MATSOLVERMUMPS, 
				    0.0, 1e-14, 1);
      break;
    default:
      ERROR_EXIT("No laplace solution mode %d available!\n", laplaceSolutionMode);
    }

    setConstantNullSpace(matShellContext.kspLaplace);

    MSG("Setup of Navier-Stokes preconditioner needed %.5f seconds\n", 
	t.elapsed());
  }


  void PetscSolverNavierStokes2::exitPreconditioner(PC pc)
  {
    FUNCNAME("PetscSolverNavierStokes2::exitPreconditioner()");

    massMatrixSolver->destroyMatrixData();
    massMatrixSolver->destroyVectorData();
    laplaceMatrixSolver->destroyMatrixData();
    laplaceMatrixSolver->destroyVectorData();
    conDifMatrixSolver->destroyMatrixData();
    conDifMatrixSolver->destroyVectorData();

    massMatrixSolver->destroyVectorData();
    laplaceMatrixSolver->destroyVectorData();
    conDifMatrixSolver->destroyVectorData();
    
    
    delete massMatrixSolver;
    massMatrixSolver = NULL;

    delete laplaceMatrixSolver;
    laplaceMatrixSolver = NULL;

    delete conDifMatrixSolver;
    conDifMatrixSolver = NULL;
  }
} }