InteriorBoundary.cc 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
//
// Software License for AMDiS
//
// Copyright (c) 2010 Dresden University of Technology 
// All rights reserved.
// Authors: Simon Vey, Thomas Witkowski et al.
//
// This file is part of AMDiS
//
// See also license.opensource.txt in the distribution.


13
#include "parallel/InteriorBoundary.h"
14
#include "parallel/ElementObjectDatabase.h"
15
16
#include "FiniteElemSpace.h"
#include "BasisFunction.h"
17
#include "Serializer.h"
18
#include "VertexVector.h"
19
20

namespace AMDiS {
Thomas Witkowski's avatar
Thomas Witkowski committed
21

22
23
24
25
26
27
28
29
30
31
32
33
34
  void InteriorBoundary::create(MPI::Intracomm &mpiComm,
				ElementObjectDatabase &elObjDb)
  { 
    FUNCNAME("InteriorBoundary::clear()");

    own.clear();
    other.clear();
    periodic.clear();

    Mesh *mesh = elObjDb.getMesh();
    TEST_EXIT_DBG(mesh)("Should not happen!\n");

    int mpiRank = mpiComm.Get_rank();
35

36
37
38
39
    // === Create interior boundary data structure. ===
    
    for (int geoPos = 0; geoPos < mesh->getDim(); geoPos++) {
      GeoIndex geoIndex = INDEX_OF_DIM(geoPos, mesh->getDim());
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
      while (elObjDb.iterate(geoIndex)) {
	map<int, ElementObjectData>& objData = elObjDb.getIterateData();
	if (!(objData.count(mpiRank) && objData.size() > 1))
	  continue;

	int owner = elObjDb.getIterateOwner();
	ElementObjectData& rankBoundEl = objData[mpiRank];
	
	AtomicBoundary bound;
	bound.maxLevel = elObjDb.getIterateMaxLevel();
	bound.rankObj.el = elObjDb.getElementPtr(rankBoundEl.elIndex);
	bound.rankObj.elIndex = rankBoundEl.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(rankBoundEl.elIndex);
	bound.rankObj.subObj = geoIndex;
	bound.rankObj.ithObj = rankBoundEl.ithObject;
56
	
57
58
59
60
61
62
63
64
	if (geoIndex == FACE) {
	  for (int edgeNo = 0; edgeNo < 3; edgeNo++) {
	    int edgeOfFace = 
	      bound.rankObj.el->getEdgeOfFace(bound.rankObj.ithObj, edgeNo);
	    
	    bound.rankObj.excludedSubstructures.push_back(make_pair(EDGE, edgeOfFace));
	  }
	}
65
	
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
	
	if (owner == mpiRank) {
	  for (map<int, ElementObjectData>::iterator it2 = objData.begin();
	       it2 != objData.end(); ++it2) {
	    if (it2->first == mpiRank)
	      continue;
	    
	    bound.neighObj.el = elObjDb.getElementPtr(it2->second.elIndex);
	    bound.neighObj.elIndex = it2->second.elIndex;
	    bound.neighObj.elType = elObjDb.getElementType(it2->second.elIndex);
	    bound.neighObj.subObj = geoIndex;
	    bound.neighObj.ithObj = it2->second.ithObject;
	    
	    bound.type = INTERIOR;
	    
81
	    AtomicBoundary& b = getNewOwn(it2->first);
82
83
84
85
86
87
88
89
90
91
92
93
	    b = bound;
	    if (geoIndex == EDGE)
	      b.neighObj.reverseMode = 
		elObjDb.getEdgeReverseMode(rankBoundEl, it2->second);
	    if (geoIndex == FACE)
	      b.neighObj.reverseMode = 
		elObjDb.getFaceReverseMode(rankBoundEl, it2->second);
	  }
	  
	} else {
	  TEST_EXIT_DBG(objData.count(owner) == 1)
	    ("Should not happen!\n");
94
	  
95
96
97
98
99
100
101
102
103
104
	  ElementObjectData& ownerBoundEl = objData[owner];
	  
	  bound.neighObj.el = elObjDb.getElementPtr(ownerBoundEl.elIndex);
	  bound.neighObj.elIndex = ownerBoundEl.elIndex;
	  bound.neighObj.elType = -1;
	  bound.neighObj.subObj = geoIndex;
	  bound.neighObj.ithObj = ownerBoundEl.ithObject;
	  
	  bound.type = INTERIOR;
	  
105
	  AtomicBoundary& b = getNewOther(owner);
106
107
108
109
110
111
112
113
	  b = bound;	    
	  if (geoIndex == EDGE)
	    b.rankObj.reverseMode =
	      elObjDb.getEdgeReverseMode(rankBoundEl, ownerBoundEl);
	  if (geoIndex == FACE)
	    b.rankObj.reverseMode = 
	      elObjDb.getFaceReverseMode(rankBoundEl, ownerBoundEl);
	}
114
      }
115
116
117
    }


118
    // === Create periodic boundary data structure. ===
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    for (PerBoundMap<DegreeOfFreedom>::iterator it = elObjDb.getPeriodicVertices().begin();
	 it != elObjDb.getPeriodicVertices().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perDofEl0 = 
	elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {

	int otherElementRank = elIt->first;
	ElementObjectData& perDofEl1 = elIt->second;

	AtomicBoundary bound;
	bound.rankObj.el = elObjDb.getElementPtr(perDofEl0.elIndex);
	bound.rankObj.elIndex = perDofEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perDofEl0.elIndex);
	bound.rankObj.subObj = VERTEX;
	bound.rankObj.ithObj = perDofEl0.ithObject;

	bound.neighObj.el = elObjDb.getElementPtr(perDofEl1.elIndex);
	bound.neighObj.elIndex = perDofEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perDofEl1.elIndex);
	bound.neighObj.subObj = VERTEX;
	bound.neighObj.ithObj = perDofEl1.ithObject;

	bound.type = it->second;

149
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
	b = bound;	    
      }
    }


    for (PerBoundMap<DofEdge>::iterator it = elObjDb.getPeriodicEdges().begin();
	 it != elObjDb.getPeriodicEdges().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      ElementObjectData& perEdgeEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perEdgeEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perEdgeEl0.elIndex);
	bound.rankObj.elIndex = perEdgeEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perEdgeEl0.elIndex);
	bound.rankObj.subObj = EDGE;
	bound.rankObj.ithObj = perEdgeEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perEdgeEl1.elIndex);
	bound.neighObj.elIndex = perEdgeEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perEdgeEl1.elIndex);
	bound.neighObj.subObj = EDGE;
	bound.neighObj.ithObj = perEdgeEl1.ithObject;
	
	bound.type = it->second;
	
183
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getEdgeReverseMode(perEdgeEl0, perEdgeEl1);
      }
    }


    for (PerBoundMap<DofFace>::iterator it = elObjDb.getPeriodicFaces().begin();
	 it != elObjDb.getPeriodicFaces().end(); ++it) {
      if (elObjDb.isInRank(it->first.first, mpiRank) == false)
	continue;

      TEST_EXIT_DBG(elObjDb.getElements(it->first.first).size() == 1)
 	("Should not happen!\n");
      TEST_EXIT_DBG(elObjDb.getElements(it->first.second).size() == 1)
 	("Should not happen!\n");

      ElementObjectData& perFaceEl0 = elObjDb.getElementsInRank(it->first.first)[mpiRank];

      for (map<int, ElementObjectData>::iterator elIt = elObjDb.getElementsInRank(it->first.second).begin();
 	   elIt != elObjDb.getElementsInRank(it->first.second).end(); ++elIt) {
      
	int otherElementRank = elIt->first;
	ElementObjectData& perFaceEl1 = elIt->second;

	AtomicBoundary bound;	    	    
	bound.rankObj.el = elObjDb.getElementPtr(perFaceEl0.elIndex);
	bound.rankObj.elIndex = perFaceEl0.elIndex;
	bound.rankObj.elType = elObjDb.getElementType(perFaceEl0.elIndex);
	bound.rankObj.subObj = FACE;
	bound.rankObj.ithObj = perFaceEl0.ithObject;
	
	bound.neighObj.el = elObjDb.getElementPtr(perFaceEl1.elIndex);
	bound.neighObj.elIndex = perFaceEl1.elIndex;
	bound.neighObj.elType = elObjDb.getElementType(perFaceEl1.elIndex);
	bound.neighObj.subObj = FACE;
	bound.neighObj.ithObj = perFaceEl1.ithObject;
	
	bound.type = it->second;
	
229
	AtomicBoundary& b = getNewPeriodic(otherElementRank);
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
	b = bound;
     
	if (mpiRank > otherElementRank)
	  b.neighObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
	else
	  b.rankObj.reverseMode = 
	    elObjDb.getFaceReverseMode(perFaceEl0, perFaceEl1);
      }
    }
    

    // === Once we have this information, we must care about the order of the ===
    // === atomic bounds in the three boundary handling object. Eventually    ===
    // === all the boundaries have to be in the same order on both ranks that ===
    // === share the bounday.                                                 ===

    StdMpi<vector<AtomicBoundary> > stdMpi(mpiComm);
    stdMpi.send(own);
    stdMpi.recv(other);
    stdMpi.startCommunication();


    // === The information about all neighbouring boundaries has been         ===
    // === received. So the rank tests if its own atomic boundaries are in    ===
    // === the same order. If not, the atomic boundaries are swaped to the    ===
    // === correct order.                                                     ===

    for (RankToBoundMap::iterator rankIt = other.begin();
	 rankIt != other.end(); ++rankIt) {

      // === We have received from rank "rankIt->first" the ordered list of   ===
      // === element indices. Now, we have to sort the corresponding list in  ===
      // === this rank to get the same order.                                 ===
     
      for (unsigned int j = 0; j < rankIt->second.size(); j++) {

	// If the expected object is not at place, search for it.

	BoundaryObject &recvedBound = stdMpi.getRecvData()[rankIt->first][j].rankObj;

	if ((rankIt->second)[j].neighObj != recvedBound) {
	  unsigned int k = j + 1;

	  for (; k < rankIt->second.size(); k++)
 	    if ((rankIt->second)[k].neighObj == recvedBound)
	      break;

	  // The element must always be found, because the list is just in
	  // another order.
	  TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");

	  // Swap the current with the found element.
	  AtomicBoundary tmpBound = (rankIt->second)[k];
	  (rankIt->second)[k] = (rankIt->second)[j];
	  (rankIt->second)[j] = tmpBound;	
	}
      }
    }


    // === Do the same for the periodic boundaries. ===

    if (periodic.size() > 0) {
      stdMpi.clear();

      RankToBoundMap sendBounds, recvBounds;
      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

	if (rankIt->first == mpiRank)
	  continue;

	if (rankIt->first < mpiRank)
	  sendBounds[rankIt->first] = rankIt->second;
	else
	  recvBounds[rankIt->first] = rankIt->second;	
      }

      stdMpi.send(sendBounds);
      stdMpi.recv(recvBounds);
      stdMpi.startCommunication();

      for (RankToBoundMap::iterator rankIt = periodic.begin();
	   rankIt != periodic.end(); ++rankIt) {

 	if (rankIt->first <= mpiRank)
 	  continue;
  
	for (unsigned int j = 0; j < rankIt->second.size(); j++) {
	  BoundaryObject &recvRankObj = 
	    stdMpi.getRecvData()[rankIt->first][j].rankObj;
	  BoundaryObject &recvNeighObj = 
	    stdMpi.getRecvData()[rankIt->first][j].neighObj;

	  if (periodic[rankIt->first][j].neighObj != recvRankObj ||
	      periodic[rankIt->first][j].rankObj != recvNeighObj) {
	    unsigned int k = j + 1;	    
	    for (; k < rankIt->second.size(); k++)
	      if (periodic[rankIt->first][k].neighObj == recvRankObj &&
		  periodic[rankIt->first][k].rankObj == recvNeighObj)
		break;
	    
	    // The element must always be found, because the list is just in 
	    // another order.
	    TEST_EXIT_DBG(k < rankIt->second.size())("Should never happen!\n");
336

337
338
339
340
341
342
343
344
	    // Swap the current with the found element.
	    AtomicBoundary tmpBound = (rankIt->second)[k];
	    (rankIt->second)[k] = (rankIt->second)[j];
	    (rankIt->second)[j] = tmpBound;	
	  } 
	}
      }     
    } // periodicBoundary.boundary.size() > 0
345
346
347
  }


348
349
  void InteriorBoundary::serialize(std::ostream &out)
  {
350
351
    FUNCNAME("InteriorBoundary::serialize()");

352
353
354
    ERROR_EXIT("REWRITE TO MULTILEVEL STRUCTURE!\n");

#if 0
355
    int mSize = boundary.size();
356
    SerUtil::serialize(out, mSize);
357
358
    for (RankToBoundMap::iterator it = boundary.begin(); 
	 it != boundary.end(); ++it) {
359
360
      int rank = it->first;
      int boundSize = it->second.size();
361
362
      SerUtil::serialize(out, rank);
      SerUtil::serialize(out, boundSize);
363
364
365
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = (it->second)[i];

366
	SerUtil::serialize(out, bound.rankObj.elIndex);
367
	SerUtil::serialize(out, bound.rankObj.elType);
368
369
	SerUtil::serialize(out, bound.rankObj.subObj);
	SerUtil::serialize(out, bound.rankObj.ithObj);
370
	SerUtil::serialize(out, bound.rankObj.reverseMode);
371
	serializeExcludeList(out, bound.rankObj.excludedSubstructures);
372

373
	SerUtil::serialize(out, bound.neighObj.elIndex);
374
	SerUtil::serialize(out, bound.neighObj.elType);
375
376
	SerUtil::serialize(out, bound.neighObj.subObj);
	SerUtil::serialize(out, bound.neighObj.ithObj);
377
	SerUtil::serialize(out, bound.neighObj.reverseMode);
378
	serializeExcludeList(out, bound.neighObj.excludedSubstructures);
379
380

	SerUtil::serialize(out, bound.type);
381
382
      }
    }
383
#endif
384
385
  }

386

387
388
  void InteriorBoundary::deserialize(std::istream &in, 
				     std::map<int, Element*> &elIndexMap)
389
  {
390
391
    FUNCNAME("InteriorBoundary::deserialize()");

392
393
394
    ERROR_EXIT("REWRITE TO MULTILEVEL STRUCTURE!\n");

#if 0
395
    int mSize = 0;
396
    SerUtil::deserialize(in, mSize);
397
398
399
    for (int i = 0; i < mSize; i++) {
      int rank = 0;
      int boundSize = 0;
400
401
      SerUtil::deserialize(in, rank);
      SerUtil::deserialize(in, boundSize);
402
403
404
405
406

      boundary[rank].resize(boundSize);
      for (int i = 0; i < boundSize; i++) {
	AtomicBoundary &bound = boundary[rank][i];

407
	SerUtil::deserialize(in, bound.rankObj.elIndex);
408
	SerUtil::deserialize(in, bound.rankObj.elType);
409
410
	SerUtil::deserialize(in, bound.rankObj.subObj);
	SerUtil::deserialize(in, bound.rankObj.ithObj);
411
	SerUtil::deserialize(in, bound.rankObj.reverseMode);
412
	deserializeExcludeList(in, bound.rankObj.excludedSubstructures);
413

414
	SerUtil::deserialize(in, bound.neighObj.elIndex);
415
	SerUtil::deserialize(in, bound.neighObj.elType);
416
417
	SerUtil::deserialize(in, bound.neighObj.subObj);
	SerUtil::deserialize(in, bound.neighObj.ithObj);
418
	SerUtil::deserialize(in, bound.neighObj.reverseMode);
419
	deserializeExcludeList(in, bound.neighObj.excludedSubstructures);
420

421
422
	SerUtil::deserialize(in, bound.type);

423
424
425
426
	TEST_EXIT_DBG(elIndexMap.count(bound.rankObj.elIndex) == 1)
	  ("Cannot find element with index %d for deserialization!\n", 
	   bound.rankObj.elIndex);

427
428
429
	TEST_EXIT_DBG(elIndexMap[bound.rankObj.elIndex]->getIndex() == 
		      bound.rankObj.elIndex)("Should not happen!\n");

430
	bound.rankObj.el = elIndexMap[bound.rankObj.elIndex];
431

432
433
434
	// For the case of periodic interior boundaries, a rank may have an
	// boundary with itself. In this case, also the pointer to the neighbour
	//  object must be set correctly.
435
436
437
438
	if (elIndexMap.count(bound.neighObj.elIndex))
	  bound.neighObj.el = elIndexMap[bound.neighObj.elIndex];
	else
	  bound.neighObj.el = NULL;
439
440
      }
    }
441
#endif
442
  }
443
444


445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
  AtomicBoundary& InteriorBoundary::getNewOwn(int rank)
  {
    int size = own[rank].size();
    own[rank].resize(size + 1);
    return own[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewOther(int rank)
  {
    int size = other[rank].size();
    other[rank].resize(size + 1);
    return other[rank][size];
  }


  AtomicBoundary& InteriorBoundary::getNewPeriodic(int rank)
  {
    int size = periodic[rank].size();
    periodic[rank].resize(size + 1);
    return periodic[rank][size];
  }


469
470
  void InteriorBoundary::serializeExcludeList(std::ostream &out, 
					      ExcludeList &list)
471
472
473
474
475
476
477
478
479
480
  {
    int size = list.size();
    SerUtil::serialize(out, size);
    for (int i = 0; i < size; i++) {
      SerUtil::serialize(out, list[i].first);
      SerUtil::serialize(out, list[i].second);
    }
  }


481
482
  void InteriorBoundary::deserializeExcludeList(std::istream &in, 
						ExcludeList &list)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  {
    int size = 0;
    SerUtil::deserialize(in, size);
    list.resize(0);
    list.reserve(size);

    for (int i = 0; i < size; i++) {
      GeoIndex a;
      int b;

      SerUtil::deserialize(in, a);
      SerUtil::deserialize(in, b);
      list.push_back(std::make_pair(a, b));
    }
  }

499
}